Maria Tsilimos
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import streamlit as st
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
import pandas as pd
|
5 |
+
from transformers import pipeline
|
6 |
+
import plotly.express as px
|
7 |
+
import time
|
8 |
+
import io
|
9 |
+
import os
|
10 |
+
import zipfile
|
11 |
+
import re
|
12 |
+
import numpy as np
|
13 |
+
from cryptography.fernet import Fernet
|
14 |
+
from streamlit_extras.stylable_container import stylable_container
|
15 |
+
from comet_ml import Experiment
|
16 |
+
|
17 |
+
st.set_page_config(layout="wide", page_title="English Keyphrase TXT & URL Entity Finder")
|
18 |
+
|
19 |
+
# --- Configuration for Comet ML ---
|
20 |
+
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
21 |
+
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
22 |
+
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
23 |
+
comet_initialized = False
|
24 |
+
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
|
25 |
+
comet_initialized = True
|
26 |
+
|
27 |
+
# --- Initialize session state for attempts and encrypted text ---
|
28 |
+
if 'source_type_attempts' not in st.session_state:
|
29 |
+
st.session_state['source_type_attempts'] = 0
|
30 |
+
if 'encrypted_text_to_process' not in st.session_state:
|
31 |
+
st.session_state['encrypted_text_to_process'] = None
|
32 |
+
if 'uploaded_file_content' not in st.session_state:
|
33 |
+
st.session_state['uploaded_file_content'] = None # To store content of uploaded file
|
34 |
+
if 'file_uploader_key' not in st.session_state:
|
35 |
+
st.session_state['file_uploader_key'] = 0 # To reset the file uploader
|
36 |
+
|
37 |
+
max_attempts = 10
|
38 |
+
|
39 |
+
# --- Fernet Encryption Setup ---
|
40 |
+
@st.cache_resource
|
41 |
+
def load_encryption_key():
|
42 |
+
try:
|
43 |
+
key_str = os.environ.get("FERNET_KEY")
|
44 |
+
if not key_str:
|
45 |
+
raise ValueError("FERNET_KEY environment variable not set. Cannot perform encryption/decryption.")
|
46 |
+
key_bytes = key_str.encode('utf-8')
|
47 |
+
return Fernet(key_bytes)
|
48 |
+
except ValueError as ve:
|
49 |
+
st.error(f"Configuration Error: {ve}. Please ensure the 'FERNET_KEY' environment variable is set securely in your deployment environment (e.g., Hugging Face Spaces secrets, Render environment variables) or in a local .env file for development.")
|
50 |
+
st.stop()
|
51 |
+
except Exception as e:
|
52 |
+
st.error(f"An unexpected error occurred while loading encryption key: {e}. Please check your key format and environment settings.")
|
53 |
+
st.stop()
|
54 |
+
|
55 |
+
# Initialize the Fernet cipher instance globally (cached)
|
56 |
+
fernet = load_encryption_key()
|
57 |
+
|
58 |
+
def encrypt_text(text_content: str) -> bytes:
|
59 |
+
"""Encrypts a string using the loaded Fernet cipher."""
|
60 |
+
return fernet.encrypt(text_content.encode('utf-8'))
|
61 |
+
|
62 |
+
def decrypt_text(encrypted_bytes: bytes) -> str | None:
|
63 |
+
"""
|
64 |
+
Decrypts bytes using the loaded Fernet cipher.
|
65 |
+
Returns the decrypted string, or None if decryption fails.
|
66 |
+
"""
|
67 |
+
try:
|
68 |
+
return fernet.decrypt(encrypted_bytes).decode('utf-8')
|
69 |
+
except Exception as e:
|
70 |
+
st.error(f"Decryption failed. This might indicate data tampering or an incorrect encryption key. Error: {e}")
|
71 |
+
return None
|
72 |
+
|
73 |
+
# --- UI Header and Notes ---
|
74 |
+
st.subheader("English Keyphrase TXT & URL Entity Finder", divider="rainbow")
|
75 |
+
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
76 |
+
|
77 |
+
expander = st.expander("**Important notes on the English Keyphrase TXT & URL Entity Finder**")
|
78 |
+
expander.write('''
|
79 |
+
**Named Entities:** This English Keyphrase TXT & URL Entity Finder extracts keyphrases from English academic and scientific papers.
|
80 |
+
|
81 |
+
Results are presented in an easy-to-read table, visualized in an interactive bar chart and tree map, and are available for download along with a Glossary of tags.
|
82 |
+
|
83 |
+
**How to Use:**
|
84 |
+
1. Paste a URL and press Enter.
|
85 |
+
2. Alternatively, type or paste text directly into the text area and press Ctrl + Enter.
|
86 |
+
3. Or, upload your TXT file.
|
87 |
+
|
88 |
+
**Usage Limits:** You can request results up to 10 times.
|
89 |
+
|
90 |
+
**Customization:** To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
|
91 |
+
|
92 |
+
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
|
93 |
+
|
94 |
+
For any errors or inquiries, please contact us at [email protected]
|
95 |
+
''')
|
96 |
+
|
97 |
+
# --- Sidebar Content ---
|
98 |
+
with st.sidebar:
|
99 |
+
container = st.container(border=True)
|
100 |
+
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
|
101 |
+
st.subheader("Related NER Web Apps", divider="rainbow")
|
102 |
+
st.link_button("Scandinavian JSON Entity Finder", "https://nlpblogs.com/shop/named-entity-recognition-ner/scandinavian-json-entity-finder/", type="primary")
|
103 |
+
|
104 |
+
# --- Input Fields ---
|
105 |
+
def clear_url_input():
|
106 |
+
st.session_state.url = ""
|
107 |
+
st.session_state.encrypted_text_to_process = None
|
108 |
+
st.session_state.uploaded_file_content = None # Clear file content as well
|
109 |
+
st.session_state.my_text_area = "" # Clear text area
|
110 |
+
st.session_state['file_uploader_key'] += 1 # Increment key to reset file uploader
|
111 |
+
|
112 |
+
def clear_text_input():
|
113 |
+
st.session_state.my_text_area = ""
|
114 |
+
st.session_state.encrypted_text_to_process = None
|
115 |
+
st.session_state.uploaded_file_content = None # Clear file content as well
|
116 |
+
st.session_state.url = "" # Clear URL
|
117 |
+
st.session_state['file_uploader_key'] += 1 # Increment key to reset file uploader
|
118 |
+
|
119 |
+
def clear_file_input():
|
120 |
+
st.session_state.uploaded_file_content = None
|
121 |
+
st.session_state.encrypted_text_to_process = None
|
122 |
+
st.session_state.url = "" # Clear URL
|
123 |
+
st.session_state.my_text_area = "" # Clear text area
|
124 |
+
st.session_state['file_uploader_key'] += 1 # Increment key to reset file uploader
|
125 |
+
|
126 |
+
url = st.text_input("Enter URL from the internet, and then press Enter:", key="url")
|
127 |
+
st.button("Clear URL", on_click=clear_url_input)
|
128 |
+
|
129 |
+
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
|
130 |
+
st.button("Clear Text", on_click=clear_text_input)
|
131 |
+
|
132 |
+
uploaded_file = st.file_uploader("Or upload a .txt file", type=["txt"], key=f"file_uploader_{st.session_state['file_uploader_key']}")
|
133 |
+
st.button("Clear Uploaded File", on_click=clear_file_input)
|
134 |
+
|
135 |
+
source_type = None
|
136 |
+
input_content = None
|
137 |
+
current_run_text = None # This will hold the text before encryption for the current run
|
138 |
+
|
139 |
+
# --- Logic to determine input source and content ---
|
140 |
+
if uploaded_file is not None:
|
141 |
+
source_type = 'file'
|
142 |
+
input_content = uploaded_file.name # Store filename as input_content for logging
|
143 |
+
# Read the content of the uploaded file
|
144 |
+
string_data = io.StringIO(uploaded_file.getvalue().decode("utf-8")).read()
|
145 |
+
current_run_text = string_data
|
146 |
+
st.session_state['uploaded_file_content'] = current_run_text # Store in session state for re-runs
|
147 |
+
st.success("TXT file uploaded successfully. File content encrypted and secured. Due to security protocols, the file content is hidden.")
|
148 |
+
st.divider()
|
149 |
+
st.write("**Input text content (from uploaded file)**")
|
150 |
+
st.write(current_run_text[:500] + "..." if len(current_run_text) > 500 else current_run_text)
|
151 |
+
elif url:
|
152 |
+
source_type = 'url'
|
153 |
+
input_content = url
|
154 |
+
# Fetch and encrypt URL content immediately
|
155 |
+
if not url.startswith(("http://", "https://")):
|
156 |
+
st.error("Please enter a valid URL starting with 'http://' or 'https://'.")
|
157 |
+
current_run_text = None
|
158 |
+
else:
|
159 |
+
try:
|
160 |
+
with st.spinner(f"Fetching and parsing content from **{url}**...", show_time=True):
|
161 |
+
f = requests.get(url, timeout=10)
|
162 |
+
f.raise_for_status()
|
163 |
+
soup = BeautifulSoup(f.text, 'html.parser')
|
164 |
+
current_run_text = soup.get_text(separator=' ', strip=True)
|
165 |
+
st.divider()
|
166 |
+
st.write("**Input text content (from URL)**")
|
167 |
+
st.write(current_run_text[:500] + "..." if len(current_run_text) > 500 else current_run_text)
|
168 |
+
except Exception as e:
|
169 |
+
st.error(f"Error fetching or parsing URL: {e}")
|
170 |
+
current_run_text = None
|
171 |
+
elif text:
|
172 |
+
source_type = 'text'
|
173 |
+
input_content = text
|
174 |
+
current_run_text = text
|
175 |
+
st.divider()
|
176 |
+
st.write("**Input text content (from text area)**")
|
177 |
+
st.write(current_run_text[:500] + "..." if len(current_run_text) > 500 else current_run_text)
|
178 |
+
|
179 |
+
# Encrypt and store the text in session state if available
|
180 |
+
if current_run_text and current_run_text.strip():
|
181 |
+
st.session_state['encrypted_text_to_process'] = encrypt_text(current_run_text)
|
182 |
+
else:
|
183 |
+
st.session_state['encrypted_text_to_process'] = None
|
184 |
+
|
185 |
+
# --- Main Processing Logic (triggered by input or refresh) ---
|
186 |
+
# Initialize experiment here, before the try block, to ensure it's always defined
|
187 |
+
experiment = None
|
188 |
+
start_time_overall = None # Initialize to None so it can be checked in finally
|
189 |
+
|
190 |
+
try: # Outer try block for general error handling and finally cleanup
|
191 |
+
if source_type: # Only proceed if there's a source type
|
192 |
+
start_time_overall = time.time() # Start timer here, now within the try block scope
|
193 |
+
|
194 |
+
if st.session_state['source_type_attempts'] >= max_attempts:
|
195 |
+
st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
|
196 |
+
pass
|
197 |
+
else:
|
198 |
+
st.session_state['source_type_attempts'] += 1
|
199 |
+
|
200 |
+
@st.cache_resource
|
201 |
+
def load_ner_model():
|
202 |
+
return pipeline("token-classification", model="ml6team/keyphrase-extraction-kbir-inspec", aggregation_strategy="max", stride=128, ignore_labels=["O"])
|
203 |
+
|
204 |
+
model = load_ner_model()
|
205 |
+
|
206 |
+
# Decrypt text from session state before processing
|
207 |
+
text_for_ner = None
|
208 |
+
if st.session_state['encrypted_text_to_process'] is not None:
|
209 |
+
text_for_ner = decrypt_text(st.session_state['encrypted_text_to_process'])
|
210 |
+
|
211 |
+
if text_for_ner and len(text_for_ner.strip()) > 0:
|
212 |
+
with st.spinner("Analyzing text...", show_time=True):
|
213 |
+
entities = model(text_for_ner)
|
214 |
+
data = []
|
215 |
+
if entities:
|
216 |
+
for entity in entities:
|
217 |
+
if all(k in entity for k in ['word', 'entity_group', 'score', 'start', 'end']):
|
218 |
+
data.append({
|
219 |
+
'word': entity['word'],
|
220 |
+
'entity_group': entity['entity_group'],
|
221 |
+
'score': entity['score'],
|
222 |
+
'start': entity['start'],
|
223 |
+
'end': entity['end']
|
224 |
+
})
|
225 |
+
else:
|
226 |
+
st.warning(f"Skipping malformed entity encountered: {entity}. Missing expected keys.")
|
227 |
+
df = pd.DataFrame(data)
|
228 |
+
else:
|
229 |
+
df = pd.DataFrame(columns=['word', 'entity_group', 'score', 'start', 'end'])
|
230 |
+
|
231 |
+
if not df.empty:
|
232 |
+
pattern = r'[^\w\s]'
|
233 |
+
df['word'] = df['word'].replace(pattern, '', regex=True)
|
234 |
+
df = df.replace('', 'Unknown')
|
235 |
+
|
236 |
+
st.subheader("All Extracted Keyphrases", divider="rainbow")
|
237 |
+
st.dataframe(df, use_container_width=True) # Full dataframe of all entities
|
238 |
+
|
239 |
+
# Glossary section is an expander and functions as requested
|
240 |
+
with st.expander("See Glossary of tags"):
|
241 |
+
st.write('''
|
242 |
+
'**word**': ['entity extracted from your text data']
|
243 |
+
|
244 |
+
'**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
|
245 |
+
|
246 |
+
'**entity_group**': ['label (tag) assigned to a given extracted entity']
|
247 |
+
|
248 |
+
'**start**': ['index of the start of the corresponding entity']
|
249 |
+
|
250 |
+
'**end**': ['index of the end of the corresponding entity']
|
251 |
+
|
252 |
+
''')
|
253 |
+
st.divider()
|
254 |
+
|
255 |
+
# --- Most Frequent Keyphrases Section with Tabs ---
|
256 |
+
st.subheader("Most Frequent Keyphrases", divider="rainbow")
|
257 |
+
# Calculate frequency of each keyphrase
|
258 |
+
word_counts = df['word'].value_counts().reset_index()
|
259 |
+
word_counts.columns = ['word', 'count']
|
260 |
+
|
261 |
+
# Filter for keyphrases that appear more than once (or top N)
|
262 |
+
# Let's show top 15 frequent keyphrases for better visualization
|
263 |
+
df_frequent = word_counts[word_counts['count'] > 1].sort_values(by='count', ascending=False).head(15)
|
264 |
+
|
265 |
+
if not df_frequent.empty:
|
266 |
+
tab1, tab2 = st.tabs(["Table", "Chart"])
|
267 |
+
|
268 |
+
with tab1:
|
269 |
+
|
270 |
+
st.dataframe(df_frequent, use_container_width=True)
|
271 |
+
|
272 |
+
with tab2:
|
273 |
+
|
274 |
+
# Bar chart for frequent keyphrases
|
275 |
+
fig_frequent_bar = px.bar(
|
276 |
+
df_frequent,
|
277 |
+
x='count',
|
278 |
+
y='word',
|
279 |
+
orientation='h',
|
280 |
+
title='Top Frequent Keyphrases by Count',
|
281 |
+
color='count', # Color bars based on count
|
282 |
+
color_continuous_scale=px.colors.sequential.Viridis # Example color scale
|
283 |
+
)
|
284 |
+
fig_frequent_bar.update_layout(yaxis={'categoryorder':'total ascending'}) # Sort bars by count
|
285 |
+
st.plotly_chart(fig_frequent_bar, use_container_width=True)
|
286 |
+
|
287 |
+
if comet_initialized and experiment:
|
288 |
+
experiment.log_figure(figure=fig_frequent_bar, figure_name="frequent_keyphrases_bar_chart")
|
289 |
+
else:
|
290 |
+
st.info("No keyphrases found with more than one occurrence to display in tabs.")
|
291 |
+
|
292 |
+
st.divider()
|
293 |
+
|
294 |
+
if comet_initialized:
|
295 |
+
experiment = Experiment(
|
296 |
+
api_key=COMET_API_KEY,
|
297 |
+
workspace=COMET_WORKSPACE,
|
298 |
+
project_name=COMET_PROJECT_NAME,
|
299 |
+
)
|
300 |
+
experiment.log_parameter("input_source_type", source_type)
|
301 |
+
experiment.log_parameter("input_content_length", len(input_content) if isinstance(input_content, str) else len(str(input_content)))
|
302 |
+
if not df.empty:
|
303 |
+
experiment.log_table("predicted_entities", df)
|
304 |
+
else:
|
305 |
+
experiment.log_text("No entities found for logging.")
|
306 |
+
|
307 |
+
# Treemap
|
308 |
+
st.subheader("Treemap of All Keyphrases", divider="rainbow")
|
309 |
+
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'entity_group', 'word'],
|
310 |
+
values='score',
|
311 |
+
color='word', # Color by 'word' for different colors for each key
|
312 |
+
color_continuous_scale=px.colors.sequential.Plasma # Example color scale
|
313 |
+
)
|
314 |
+
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
315 |
+
st.plotly_chart(fig_treemap, use_container_width=True)
|
316 |
+
|
317 |
+
if comet_initialized and experiment:
|
318 |
+
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
|
319 |
+
|
320 |
+
|
321 |
+
else:
|
322 |
+
st.warning("No entities found to generate visualizations.")
|
323 |
+
|
324 |
+
# --- Download Section ---
|
325 |
+
dfa = pd.DataFrame(
|
326 |
+
data={
|
327 |
+
'Column Name': ['word', 'entity_group', 'score', 'start', 'end'],
|
328 |
+
'Description': [
|
329 |
+
'entity extracted from your text data',
|
330 |
+
'label (tag) assigned to a given extracted entity',
|
331 |
+
'accuracy score; how accurately a tag has been assigned to a given entity',
|
332 |
+
'index of the start of the corresponding entity',
|
333 |
+
'index of the end of the corresponding entity'
|
334 |
+
]
|
335 |
+
}
|
336 |
+
)
|
337 |
+
buf = io.BytesIO()
|
338 |
+
with zipfile.ZipFile(buf, "w") as myzip:
|
339 |
+
if not df.empty:
|
340 |
+
myzip.writestr("Summary_of_results.csv", df.to_csv(index=False))
|
341 |
+
myzip.writestr("Most_frequent_keyphrases.csv", df_frequent.to_csv(index=False))
|
342 |
+
myzip.writestr("Glossary_of_tags.csv", dfa.to_csv(index=False))
|
343 |
+
|
344 |
+
with stylable_container(
|
345 |
+
key="download_button",
|
346 |
+
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
|
347 |
+
):
|
348 |
+
st.download_button(
|
349 |
+
label="Download zip file",
|
350 |
+
data=buf.getvalue(),
|
351 |
+
file_name="nlpblogs_ner_results.zip",
|
352 |
+
mime="application/zip",
|
353 |
+
)
|
354 |
+
st.divider()
|
355 |
+
else:
|
356 |
+
st.warning("No meaningful text found to process. Please enter a URL, upload a text file, or type/paste text.")
|
357 |
+
except Exception as e:
|
358 |
+
st.error(f"An unexpected error occurred: {e}")
|
359 |
+
finally:
|
360 |
+
if comet_initialized and experiment is not None:
|
361 |
+
try:
|
362 |
+
experiment.end()
|
363 |
+
except Exception as comet_e:
|
364 |
+
st.warning(f"Comet ML experiment.end() failed: {comet_e}")
|
365 |
+
if start_time_overall is not None:
|
366 |
+
end_time_overall = time.time()
|
367 |
+
elapsed_time_overall = end_time_overall - start_time_overall
|
368 |
+
st.info(f"Results processed in **{elapsed_time_overall:.2f} seconds**.")
|
369 |
+
st.write(f"Number of times you requested results: **{st.session_state['source_type_attempts']}/{max_attempts}**")
|