AIEcosystem commited on
Commit
06af0c2
·
verified ·
1 Parent(s): 24e215e

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +7 -15
src/streamlit_app.py CHANGED
@@ -75,18 +75,10 @@ st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
75
  expander = st.expander("**Important notes**")
76
  expander.write("""
77
  **Named Entities:** This HR.ai predicts sixty (60) labels:
78
- "Email_address", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country",
79
- "Date_of_birth", "Gender", "Marital_status", "Full_name",
80
- "Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired",
81
- "Job_title", "Employment_type", "Start_date", "End_date", "Company", "Organization", "Role", "Position",
82
- "Performance_review", "Performance_rating", "Performance_score",
83
- "Sick_days", "Vacation_days", "Leave_of_absence", "Holidays",
84
- "Pension", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance","Retire_date",
85
- "Pay_rate", "Hourly_wage", "Annual_salary", "Overtime_pay",
86
- "Tax", "Social_security", "Deductions",
87
- "Job_posting", "Job_description", "Interview_type", "Applicant", "Candidate", "Referral", "Job_board", "Recruiter",
88
- "Contract", "Offer_letter", "Agreement",
89
- "Training_course", "Certification", "Skill"
90
 
91
  Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
92
 
@@ -138,7 +130,7 @@ if not comet_initialized:
138
  # --- Label Definitions ---
139
  labels = [
140
  "Email_address", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country",
141
- "Date_of_birth", "Gender", "Marital_status", "Full_name",
142
  "Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired",
143
  "Job_title", "Employment_type", "Start_date", "End_date", "Company", "Organization", "Role", "Position",
144
  "Performance_review", "Performance_rating", "Performance_score",
@@ -158,7 +150,7 @@ category_mapping = {
158
 
159
 
160
  "Contact Information": ["Email_address", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country"],
161
- "Personal Details": ["Date_of_birth", "Gender", "Marital_status", "Full_name"],
162
  "Employment Status": ["Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired"],
163
  "Employment Information" : ["Job_title", "Employment_type", "Start_date", "End_date", "Company", "Organization", "Role", "Position"],
164
 
@@ -178,7 +170,7 @@ category_mapping = {
178
  def load_ner_model():
179
  """Loads the GLiNER model and caches it."""
180
  try:
181
- return GLiNER.from_pretrained("gliner-community/gliner_large-v2.5", nested_ner=True, num_gen_sequences=2, gen_constraints= labels)
182
 
183
  except Exception as e:
184
  st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
 
75
  expander = st.expander("**Important notes**")
76
  expander.write("""
77
  **Named Entities:** This HR.ai predicts sixty (60) labels:
78
+ "Email", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country", "Date_of_birth", "Gender", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired", "Job_title", "Employment_type", "Start_date", "End_date", "Company", "Organization", "Role", "Position",
79
+ "Performance_review", "Performance_rating", "Performance_score", "Sick_days", "Vacation_days", "Leave_of_absence", "Holidays", "Pension", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance","Retire_date",
80
+ "Pay_rate", "Hourly_wage", "Annual_salary", "Overtime_pay", "Tax", "Social_security", "Deductions", "Job_posting", "Job_description", "Interview_type", "Applicant", "Candidate", "Referral", "Job_board", "Recruiter",
81
+ "Contract", "Offer_letter", "Agreement", "Training_course", "Certification", "Skill"
 
 
 
 
 
 
 
 
82
 
83
  Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
84
 
 
130
  # --- Label Definitions ---
131
  labels = [
132
  "Email_address", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country",
133
+ "Date_of_birth", "Gender", "Marital_status", "Person",
134
  "Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired",
135
  "Job_title", "Employment_type", "Start_date", "End_date", "Company", "Organization", "Role", "Position",
136
  "Performance_review", "Performance_rating", "Performance_score",
 
150
 
151
 
152
  "Contact Information": ["Email_address", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country"],
153
+ "Personal Details": ["Date_of_birth", "Gender", "Marital_status", "Person"],
154
  "Employment Status": ["Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired"],
155
  "Employment Information" : ["Job_title", "Employment_type", "Start_date", "End_date", "Company", "Organization", "Role", "Position"],
156
 
 
170
  def load_ner_model():
171
  """Loads the GLiNER model and caches it."""
172
  try:
173
+ return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints= labels)
174
 
175
  except Exception as e:
176
  st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")