Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +327 -38
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,329 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
import
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
""
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
| 10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
| 11 |
-
forums](https://discuss.streamlit.io).
|
| 12 |
-
|
| 13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 14 |
-
"""
|
| 15 |
-
|
| 16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
| 17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
| 18 |
-
|
| 19 |
-
indices = np.linspace(0, 1, num_points)
|
| 20 |
-
theta = 2 * np.pi * num_turns * indices
|
| 21 |
-
radius = indices
|
| 22 |
-
|
| 23 |
-
x = radius * np.cos(theta)
|
| 24 |
-
y = radius * np.sin(theta)
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({
|
| 27 |
-
"x": x,
|
| 28 |
-
"y": y,
|
| 29 |
-
"idx": indices,
|
| 30 |
-
"rand": np.random.randn(num_points),
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
| 34 |
-
.mark_point(filled=True)
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ['HF_HOME'] = '/tmp'
|
| 3 |
+
import time
|
| 4 |
import streamlit as st
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import io
|
| 7 |
+
import plotly.express as px
|
| 8 |
+
import zipfile
|
| 9 |
+
import json
|
| 10 |
+
from cryptography.fernet import Fernet
|
| 11 |
+
from streamlit_extras.stylable_container import stylable_container
|
| 12 |
+
from typing import Optional
|
| 13 |
+
from gliner import GLiNER
|
| 14 |
+
from comet_ml import Experiment
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
st.markdown(
|
| 18 |
+
"""
|
| 19 |
+
<style>
|
| 20 |
+
/* Main app background and text color */
|
| 21 |
+
.stApp {
|
| 22 |
+
background-color: #F5FFFA; /* Mint cream, a very light green */
|
| 23 |
+
color: #000000; /* Black for the text */
|
| 24 |
+
}
|
| 25 |
+
/* Sidebar background color */
|
| 26 |
+
.css-1d36184 {
|
| 27 |
+
background-color: #B2F2B2; /* A pale green for the sidebar */
|
| 28 |
+
secondary-background-color: #B2F2B2;
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
/* Expander background color */
|
| 32 |
+
.streamlit-expanderContent {
|
| 33 |
+
background-color: #F5FFFA;
|
| 34 |
+
}
|
| 35 |
+
/* Expander header background color */
|
| 36 |
+
.streamlit-expanderHeader {
|
| 37 |
+
background-color: #F5FFFA;
|
| 38 |
+
}
|
| 39 |
+
/* Text Area background and text color */
|
| 40 |
+
.stTextArea textarea {
|
| 41 |
+
background-color: #D4F4D4; /* A light, soft green */
|
| 42 |
+
color: #000000; /* Black for text */
|
| 43 |
+
}
|
| 44 |
+
/* Button background and text color */
|
| 45 |
+
.stButton > button {
|
| 46 |
+
background-color: #D4F4D4;
|
| 47 |
+
color: #000000;
|
| 48 |
+
}
|
| 49 |
+
/* Warning box background and text color */
|
| 50 |
+
.stAlert.st-warning {
|
| 51 |
+
background-color: #C8F0C8; /* A light green for the warning box */
|
| 52 |
+
color: #000000;
|
| 53 |
+
}
|
| 54 |
+
/* Success box background and text color */
|
| 55 |
+
.stAlert.st-success {
|
| 56 |
+
background-color: #C8F0C8; /* A light green for the success box */
|
| 57 |
+
color: #000000;
|
| 58 |
+
}
|
| 59 |
+
</style>
|
| 60 |
+
""",
|
| 61 |
+
unsafe_allow_html=True
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# --- Page Configuration and UI Elements ---
|
| 70 |
+
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
| 71 |
+
|
| 72 |
+
st.subheader("HR.ai", divider="orange")
|
| 73 |
+
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
| 74 |
+
|
| 75 |
+
expander = st.expander("**Important notes on the Human Resources**")
|
| 76 |
+
expander.write("""
|
| 77 |
+
**Named Entities:** This HR.ai predicts twenty-four (24) labels:
|
| 78 |
+
"Email_address", "Phone_number", "Street_address", "City", "State", "Zip_code",
|
| 79 |
+
"Date_of_birth", "Gender", "Marital_status", "Full_name",
|
| 80 |
+
"Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired",
|
| 81 |
+
"Job_title", "Employment_type", "Start_date", "End_date", "Company", "Organization", "Role", "Position",
|
| 82 |
+
"Performance_review", "Performance_rating", "Performance_score",
|
| 83 |
+
"Sick_days", "Vacation_days", "Leave_of_absence", "Holidays",
|
| 84 |
+
"Pension", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance","Retire_date",
|
| 85 |
+
"Pay_rate", "Hourly_wage", "Annual_salary", "Overtime_pay",
|
| 86 |
+
"Tax", "Social_security", "Deductions",
|
| 87 |
+
"Job_posting", "Job_description", "Interview_type", "Applicant", "Candidate", "Referral", "Job_board", "Recruiter",
|
| 88 |
+
"Contract", "Offer_letter", "Agreement",
|
| 89 |
+
"Training_course", "Certification", "Skill"]
|
| 90 |
+
|
| 91 |
+
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
| 92 |
+
|
| 93 |
+
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
|
| 94 |
+
|
| 95 |
+
**Usage Limits:** You can request results unlimited times for one (1) week.
|
| 96 |
+
|
| 97 |
+
**Supported Languages:** English
|
| 98 |
+
|
| 99 |
+
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
|
| 100 |
+
|
| 101 |
+
For any errors or inquiries, please contact us at [email protected]
|
| 102 |
+
""")
|
| 103 |
+
|
| 104 |
+
with st.sidebar:
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
st.write("Use the following code to embed the ProductTag web app on your website. Feel free to adjust the width and height values to fit your page.")
|
| 108 |
+
code = '''
|
| 109 |
+
<iframe
|
| 110 |
+
src="https://aiecosystem-producttag.hf.space"
|
| 111 |
+
frameborder="0"
|
| 112 |
+
width="850"
|
| 113 |
+
height="450"
|
| 114 |
+
></iframe>
|
| 115 |
+
'''
|
| 116 |
+
st.code(code, language="html")
|
| 117 |
+
|
| 118 |
+
st.text("")
|
| 119 |
+
st.text("")
|
| 120 |
+
st.divider()
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
st.subheader("Ready to build your own NER Web App?", divider="orange")
|
| 125 |
+
st.link_button("NER Builder", "https://nlpblogs.com", type="primary")
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# --- Comet ML Setup ---
|
| 130 |
+
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
| 131 |
+
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
| 132 |
+
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
| 133 |
+
|
| 134 |
+
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
|
| 135 |
+
if not comet_initialized:
|
| 136 |
+
st.warning("Comet ML not initialized. Check environment variables.")
|
| 137 |
+
|
| 138 |
+
# --- Label Definitions ---
|
| 139 |
+
labels = [
|
| 140 |
+
"Email_Address", "Phone_Number", "Street_Address", "City", "State", "Zip_code",
|
| 141 |
+
"Date_of_Birth", "Gender", "Marital_Status", "Full_Name",
|
| 142 |
+
"Full_Time", "Part_Time", "Contract", "Temporary", "Terminated", "Active", "Retired",
|
| 143 |
+
"Job_Title", "Employment_Type", "Start_Date", "End_Date", "Company_Name", "Organization_Name", "Role", "Position",
|
| 144 |
+
"Performance_Review", "Performance_Rating", "Performance_Score",
|
| 145 |
+
"Sick_Days", "Vacation_Days", "Leave_of_Absence", "Holidays",
|
| 146 |
+
"Pension", "Retirement_Plan", "Bonus", "Stock_Options", "Health_Insurance","Retire date",
|
| 147 |
+
"Pay_Rate", "Hourly_Wage", "Annual_Salary", "Overtime_Pay",
|
| 148 |
+
"Tax", "Social_Security", "Deductions",
|
| 149 |
+
"Job_Posting", "Job_Description", "Interview_Type", "Applicant", "Candidate", "Referral", "Job_board", "Recruiter",
|
| 150 |
+
"Contract", "Offer_letter", "Agreement",
|
| 151 |
+
"Training_Course", "Certification", "Skill"]
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
# Create a mapping dictionary for labels to categories
|
| 157 |
+
category_mapping = {
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
"Contact Information": ["Email_Address", "Phone_Number", "Street_Address", "City", "State", "Zip_code"],
|
| 161 |
+
"Personal Details": ["Date of birth", "Gender", "Marital_Status", "Full_Name"],
|
| 162 |
+
"Employment Status": ["Full_Time", "Part_Time", "Contract", "Temporary", "Terminated", "Active", "Retired"],
|
| 163 |
+
"Employment Information" : ["Job_Title", "Employment_Type", "Start_Date", "End_Date", "Company_Name", "Organization_Name", "Role", "Position"],
|
| 164 |
+
|
| 165 |
+
"Performance": ["Performance_Review", "Performance_Rating", "Performance_Score"],
|
| 166 |
+
"Attendance": ["Sick_Days", "Vacation_Days", "Leave_of_Absence", "Holidays"],
|
| 167 |
+
"Benefits": ["Pension", "Retirement_Plan", "Bonus", "Stock_Options", "Health_Insurance", "Retire date"],
|
| 168 |
+
"Compensation": ["Pay_Rate", "Hourly_Wage", "Annual_Salary", "Overtime_Pay"],
|
| 169 |
+
"Deductions": ["Tax", "Social_Security", "Deductions"],
|
| 170 |
+
"Recruitment & Sourcing": ["Job_Posting", "Job_Description", "Interview_Type", "Applicant", "Candidate", "Referral", "Job_board", "Recruiter"],
|
| 171 |
+
"Legal & Compliance": ["Contract", "Offer_letter", "Agreement"],
|
| 172 |
+
"Professional_Development": ["Training_Course", "Certification", "Skill"]
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
# --- Model Loading ---
|
| 177 |
+
@st.cache_resource
|
| 178 |
+
def load_ner_model():
|
| 179 |
+
"""Loads the GLiNER model and caches it."""
|
| 180 |
+
try:
|
| 181 |
+
return GLiNER.from_pretrained("gliner-community/gliner_xxl-v2.5", nested_ner=True, num_gen_sequences=2, gen_constraints= labels)
|
| 182 |
+
|
| 183 |
+
except Exception as e:
|
| 184 |
+
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
| 185 |
+
st.stop()
|
| 186 |
+
|
| 187 |
+
model = load_ner_model()
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
# Flatten the mapping to a single dictionary
|
| 192 |
+
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
|
| 193 |
+
|
| 194 |
+
# --- Text Input and Clear Button ---
|
| 195 |
+
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area')
|
| 196 |
+
|
| 197 |
+
def clear_text():
|
| 198 |
+
"""Clears the text area."""
|
| 199 |
+
st.session_state['my_text_area'] = ""
|
| 200 |
+
|
| 201 |
+
st.button("Clear text", on_click=clear_text)
|
| 202 |
+
st.divider()
|
| 203 |
+
|
| 204 |
+
# --- Results Section ---
|
| 205 |
+
if st.button("Results"):
|
| 206 |
+
start_time = time.time()
|
| 207 |
+
if not text.strip():
|
| 208 |
+
st.warning("Please enter some text to extract entities.")
|
| 209 |
+
else:
|
| 210 |
+
with st.spinner("Extracting entities...", show_time=True):
|
| 211 |
+
entities = model.predict_entities(text, labels)
|
| 212 |
+
df = pd.DataFrame(entities)
|
| 213 |
+
|
| 214 |
+
if not df.empty:
|
| 215 |
+
df['category'] = df['label'].map(reverse_category_mapping)
|
| 216 |
+
|
| 217 |
+
if comet_initialized:
|
| 218 |
+
experiment = Experiment(
|
| 219 |
+
api_key=COMET_API_KEY,
|
| 220 |
+
workspace=COMET_WORKSPACE,
|
| 221 |
+
project_name=COMET_PROJECT_NAME,
|
| 222 |
+
)
|
| 223 |
+
experiment.log_parameter("input_text", text)
|
| 224 |
+
experiment.log_table("predicted_entities", df)
|
| 225 |
+
|
| 226 |
+
st.subheader("Extracted Entities", divider = "orange")
|
| 227 |
+
st.dataframe(df.style.set_properties(**{"border": "2px solid gray", "color": "blue", "font-size": "16px"}))
|
| 228 |
+
|
| 229 |
+
with st.expander("See Glossary of tags"):
|
| 230 |
+
st.write('''
|
| 231 |
+
- **text**: ['entity extracted from your text data']
|
| 232 |
+
- **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
|
| 233 |
+
- **label**: ['label (tag) assigned to a given extracted entity']
|
| 234 |
+
- **category**: ['the high-level category for the label']
|
| 235 |
+
- **start**: ['index of the start of the corresponding entity']
|
| 236 |
+
- **end**: ['index of the end of the corresponding entity']
|
| 237 |
+
''')
|
| 238 |
+
|
| 239 |
+
st.divider()
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
# Tree map
|
| 243 |
+
st.subheader("Tree map", divider = "orange")
|
| 244 |
+
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
|
| 245 |
+
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
| 246 |
+
st.plotly_chart(fig_treemap)
|
| 247 |
+
|
| 248 |
+
# Pie and Bar charts
|
| 249 |
+
grouped_counts = df['category'].value_counts().reset_index()
|
| 250 |
+
grouped_counts.columns = ['category', 'count']
|
| 251 |
+
|
| 252 |
+
col1, col2 = st.columns(2)
|
| 253 |
+
with col1:
|
| 254 |
+
st.subheader("Pie chart", divider = "orange")
|
| 255 |
+
fig_pie = px.pie(grouped_counts, values='count', names='category',
|
| 256 |
+
hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
| 257 |
+
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
| 258 |
+
st.plotly_chart(fig_pie)
|
| 259 |
+
|
| 260 |
+
with col2:
|
| 261 |
+
st.subheader("Bar chart", divider = "orange")
|
| 262 |
+
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True,
|
| 263 |
+
title='Occurrences of predicted categories')
|
| 264 |
+
st.plotly_chart(fig_bar)
|
| 265 |
+
|
| 266 |
+
# Most Frequent Entities
|
| 267 |
+
st.subheader("Most Frequent Entities", divider="orange")
|
| 268 |
+
word_counts = df['text'].value_counts().reset_index()
|
| 269 |
+
word_counts.columns = ['Entity', 'Count']
|
| 270 |
+
repeating_entities = word_counts[word_counts['Count'] > 1]
|
| 271 |
+
if not repeating_entities.empty:
|
| 272 |
+
st.dataframe(repeating_entities, use_container_width=True)
|
| 273 |
+
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
|
| 274 |
+
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'})
|
| 275 |
+
st.plotly_chart(fig_repeating_bar)
|
| 276 |
+
else:
|
| 277 |
+
st.warning("No entities were found that occur more than once.")
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
# Download Section
|
| 285 |
+
st.divider()
|
| 286 |
+
|
| 287 |
+
dfa = pd.DataFrame(
|
| 288 |
+
data={
|
| 289 |
+
'Column Name': ['text', 'label', 'score', 'start', 'end', 'category'],
|
| 290 |
+
'Description': [
|
| 291 |
+
'entity extracted from your text data',
|
| 292 |
+
'label (tag) assigned to a given extracted entity',
|
| 293 |
+
'accuracy score; how accurately a tag has been assigned to a given entity',
|
| 294 |
+
'index of the start of the corresponding entity',
|
| 295 |
+
'index of the end of the corresponding entity',
|
| 296 |
+
'the broader category the entity belongs to',
|
| 297 |
+
]
|
| 298 |
+
}
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
buf = io.BytesIO()
|
| 302 |
+
with zipfile.ZipFile(buf, "w") as myzip:
|
| 303 |
+
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
| 304 |
+
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
| 305 |
+
|
| 306 |
+
with stylable_container(
|
| 307 |
+
key="download_button",
|
| 308 |
+
css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
|
| 309 |
+
):
|
| 310 |
+
st.download_button(
|
| 311 |
+
label="Download results and glossary (zip)",
|
| 312 |
+
data=buf.getvalue(),
|
| 313 |
+
file_name="markettag_results.zip",
|
| 314 |
+
mime="application/zip",
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
if comet_initialized:
|
| 318 |
+
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
|
| 319 |
+
experiment.end()
|
| 320 |
+
|
| 321 |
+
else: # If df is empty
|
| 322 |
+
st.warning("No entities were found in the provided text.")
|
| 323 |
+
|
| 324 |
+
end_time = time.time()
|
| 325 |
+
elapsed_time = end_time - start_time
|
| 326 |
|
| 327 |
+
st.text("")
|
| 328 |
+
st.text("")
|
| 329 |
+
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|