Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +41 -33
src/streamlit_app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
import time
|
3 |
import streamlit as st
|
4 |
import pandas as pd
|
@@ -25,7 +26,8 @@ st.markdown(
|
|
25 |
background-color: #B2F2B2; /* A pale green for the sidebar */
|
26 |
secondary-background-color: #B2F2B2;
|
27 |
}
|
28 |
-
|
|
|
29 |
.streamlit-expanderContent {
|
30 |
background-color: #F5FFFA;
|
31 |
}
|
@@ -63,17 +65,23 @@ st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
|
63 |
st.subheader("HR.ai", divider="orange")
|
64 |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
65 |
expander = st.expander("**Important notes**")
|
66 |
-
expander.write("""**Named Entities:** This HR.ai predicts sixty (60) labels:"Email", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country", "Date_of_birth", "Gender", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired", "Job_title", "Employment_type", "Year", "Date", "Company", "Organization", "Role", "Position","Performance_review", "Performance_rating", "Performance_score", "Sick_days", "Vacation_days", "Leave_of_absence", "Holidays", "Pension", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Retire_date", "Pay_rate", "Hourly_wage", "Annual_salary", "Overtime_pay", "Tax", "Social_security", "Deductions", "Job_posting", "Job_description", "Interview_type", "Applicant", "Candidate", "Referral", "Job_board", "Recruiter","Contract", "Offer_letter", "Agreement", "Training_course", "Certification", "Skill"
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
72 |
|
73 |
with st.sidebar:
|
74 |
st.write("Use the following code to embed the HR.ai web app on your website. Feel free to adjust the width and height values to fit your page.")
|
75 |
code = '''
|
76 |
-
<iframe
|
|
|
|
|
|
|
|
|
|
|
77 |
'''
|
78 |
st.code(code, language="html")
|
79 |
st.text("")
|
@@ -87,6 +95,7 @@ COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
|
87 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
88 |
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
89 |
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
|
|
|
90 |
if not comet_initialized:
|
91 |
st.warning("Comet ML not initialized. Check environment variables.")
|
92 |
|
@@ -132,6 +141,7 @@ def clear_text():
|
|
132 |
|
133 |
st.button("Clear text", on_click=clear_text)
|
134 |
|
|
|
135 |
# --- Results Section ---
|
136 |
if st.button("Results"):
|
137 |
start_time = time.time()
|
@@ -141,6 +151,7 @@ if st.button("Results"):
|
|
141 |
with st.spinner("Extracting entities...", show_time=True):
|
142 |
entities = model.predict_entities(text, labels)
|
143 |
df = pd.DataFrame(entities)
|
|
|
144 |
if not df.empty:
|
145 |
df['category'] = df['label'].map(reverse_category_mapping)
|
146 |
if comet_initialized:
|
@@ -151,13 +162,13 @@ if st.button("Results"):
|
|
151 |
)
|
152 |
experiment.log_parameter("input_text", text)
|
153 |
experiment.log_table("predicted_entities", df)
|
154 |
-
|
155 |
st.subheader("Extracted Entities", divider = "orange")
|
156 |
-
|
157 |
# Create tabs for each category
|
158 |
category_names = sorted(list(category_mapping.keys()))
|
159 |
category_tabs = st.tabs(category_names)
|
160 |
-
|
161 |
for i, category_name in enumerate(category_names):
|
162 |
with category_tabs[i]:
|
163 |
df_category_filtered = df[df['category'] == category_name]
|
@@ -165,7 +176,9 @@ if st.button("Results"):
|
|
165 |
st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
|
166 |
else:
|
167 |
st.info(f"No entities found for the '{category_name}' category.")
|
168 |
-
|
|
|
|
|
169 |
with st.expander("See Glossary of tags"):
|
170 |
st.write('''
|
171 |
- **text**: ['entity extracted from your text data']
|
@@ -176,22 +189,18 @@ if st.button("Results"):
|
|
176 |
- **end**: ['index of the end of the corresponding entity']
|
177 |
''')
|
178 |
st.divider()
|
179 |
-
|
180 |
# Tree map
|
181 |
st.subheader("Tree map", divider = "orange")
|
182 |
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
|
183 |
-
fig_treemap.update_layout(
|
184 |
-
margin=dict(t=50, l=25, r=25, b=25),
|
185 |
-
paper_bgcolor='#F5FFFA',
|
186 |
-
plot_bgcolor='#F5FFFA'
|
187 |
-
)
|
188 |
st.plotly_chart(fig_treemap)
|
189 |
-
|
190 |
# Pie and Bar charts
|
191 |
grouped_counts = df['category'].value_counts().reset_index()
|
192 |
grouped_counts.columns = ['category', 'count']
|
193 |
col1, col2 = st.columns(2)
|
194 |
-
|
195 |
with col1:
|
196 |
st.subheader("Pie chart", divider = "orange")
|
197 |
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
@@ -201,16 +210,16 @@ if st.button("Results"):
|
|
201 |
plot_bgcolor='#F5FFFA'
|
202 |
)
|
203 |
st.plotly_chart(fig_pie)
|
204 |
-
|
205 |
with col2:
|
206 |
st.subheader("Bar chart", divider = "orange")
|
207 |
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
|
208 |
-
|
209 |
paper_bgcolor='#F5FFFA',
|
210 |
plot_bgcolor='#F5FFFA'
|
211 |
)
|
212 |
st.plotly_chart(fig_bar)
|
213 |
-
|
214 |
# Most Frequent Entities
|
215 |
st.subheader("Most Frequent Entities", divider="orange")
|
216 |
word_counts = df['text'].value_counts().reset_index()
|
@@ -219,18 +228,16 @@ if st.button("Results"):
|
|
219 |
if not repeating_entities.empty:
|
220 |
st.dataframe(repeating_entities, use_container_width=True)
|
221 |
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
|
222 |
-
fig_repeating_bar.update_layout(
|
223 |
-
xaxis={'categoryorder': 'total descending'},
|
224 |
paper_bgcolor='#F5FFFA',
|
225 |
-
plot_bgcolor='#F5FFFA'
|
226 |
-
)
|
227 |
st.plotly_chart(fig_repeating_bar)
|
228 |
else:
|
229 |
st.warning("No entities were found that occur more than once.")
|
230 |
-
|
231 |
# Download Section
|
232 |
st.divider()
|
233 |
-
|
234 |
dfa = pd.DataFrame(
|
235 |
data={
|
236 |
'Column Name': ['text', 'label', 'score', 'start', 'end', 'category'],
|
@@ -248,7 +255,7 @@ if st.button("Results"):
|
|
248 |
with zipfile.ZipFile(buf, "w") as myzip:
|
249 |
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
250 |
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
251 |
-
|
252 |
with stylable_container(
|
253 |
key="download_button",
|
254 |
css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
|
@@ -259,14 +266,15 @@ if st.button("Results"):
|
|
259 |
file_name="nlpblogs_results.zip",
|
260 |
mime="application/zip",
|
261 |
)
|
262 |
-
|
263 |
if comet_initialized:
|
264 |
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
|
265 |
experiment.end()
|
266 |
else: # If df is empty
|
267 |
st.warning("No entities were found in the provided text.")
|
268 |
-
|
|
|
269 |
elapsed_time = end_time - start_time
|
270 |
st.text("")
|
271 |
st.text("")
|
272 |
-
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
|
|
|
1 |
import os
|
2 |
+
os.environ['HF_HOME'] = '/tmp'
|
3 |
import time
|
4 |
import streamlit as st
|
5 |
import pandas as pd
|
|
|
26 |
background-color: #B2F2B2; /* A pale green for the sidebar */
|
27 |
secondary-background-color: #B2F2B2;
|
28 |
}
|
29 |
+
|
30 |
+
/* Expander background color */
|
31 |
.streamlit-expanderContent {
|
32 |
background-color: #F5FFFA;
|
33 |
}
|
|
|
65 |
st.subheader("HR.ai", divider="orange")
|
66 |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
67 |
expander = st.expander("**Important notes**")
|
68 |
+
expander.write("""**Named Entities:** This HR.ai predicts sixty (60) labels:"Email", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country", "Date_of_birth", "Gender", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired", "Job_title", "Employment_type", "Year", "Date", "Company", "Organization", "Role", "Position","Performance_review", "Performance_rating", "Performance_score", "Sick_days", "Vacation_days", "Leave_of_absence", "Holidays", "Pension", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Retire_date", "Pay_rate", "Hourly_wage", "Annual_salary", "Overtime_pay", "Tax", "Social_security", "Deductions", "Job_posting", "Job_description", "Interview_type", "Applicant", "Candidate", "Referral", "Job_board", "Recruiter","Contract", "Offer_letter", "Agreement", "Training_course", "Certification", "Skill"
|
69 |
+
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
70 |
+
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
|
71 |
+
**Usage Limits:** You can request results unlimited times for one (1) month.
|
72 |
+
**Supported Languages:** English, German, French, Italian, Spanish, Portuguese
|
73 |
+
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
|
74 |
+
For any errors or inquiries, please contact us at [email protected]""")
|
75 |
|
76 |
with st.sidebar:
|
77 |
st.write("Use the following code to embed the HR.ai web app on your website. Feel free to adjust the width and height values to fit your page.")
|
78 |
code = '''
|
79 |
+
<iframe
|
80 |
+
src="https://aiecosystem-hr-ai.hf.space"
|
81 |
+
frameborder="0"
|
82 |
+
width="850"
|
83 |
+
height="450"
|
84 |
+
></iframe>
|
85 |
'''
|
86 |
st.code(code, language="html")
|
87 |
st.text("")
|
|
|
95 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
96 |
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
97 |
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
|
98 |
+
|
99 |
if not comet_initialized:
|
100 |
st.warning("Comet ML not initialized. Check environment variables.")
|
101 |
|
|
|
141 |
|
142 |
st.button("Clear text", on_click=clear_text)
|
143 |
|
144 |
+
|
145 |
# --- Results Section ---
|
146 |
if st.button("Results"):
|
147 |
start_time = time.time()
|
|
|
151 |
with st.spinner("Extracting entities...", show_time=True):
|
152 |
entities = model.predict_entities(text, labels)
|
153 |
df = pd.DataFrame(entities)
|
154 |
+
|
155 |
if not df.empty:
|
156 |
df['category'] = df['label'].map(reverse_category_mapping)
|
157 |
if comet_initialized:
|
|
|
162 |
)
|
163 |
experiment.log_parameter("input_text", text)
|
164 |
experiment.log_table("predicted_entities", df)
|
165 |
+
|
166 |
st.subheader("Extracted Entities", divider = "orange")
|
167 |
+
|
168 |
# Create tabs for each category
|
169 |
category_names = sorted(list(category_mapping.keys()))
|
170 |
category_tabs = st.tabs(category_names)
|
171 |
+
|
172 |
for i, category_name in enumerate(category_names):
|
173 |
with category_tabs[i]:
|
174 |
df_category_filtered = df[df['category'] == category_name]
|
|
|
176 |
st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
|
177 |
else:
|
178 |
st.info(f"No entities found for the '{category_name}' category.")
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
with st.expander("See Glossary of tags"):
|
183 |
st.write('''
|
184 |
- **text**: ['entity extracted from your text data']
|
|
|
189 |
- **end**: ['index of the end of the corresponding entity']
|
190 |
''')
|
191 |
st.divider()
|
192 |
+
|
193 |
# Tree map
|
194 |
st.subheader("Tree map", divider = "orange")
|
195 |
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
|
196 |
+
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA')
|
|
|
|
|
|
|
|
|
197 |
st.plotly_chart(fig_treemap)
|
198 |
+
|
199 |
# Pie and Bar charts
|
200 |
grouped_counts = df['category'].value_counts().reset_index()
|
201 |
grouped_counts.columns = ['category', 'count']
|
202 |
col1, col2 = st.columns(2)
|
203 |
+
|
204 |
with col1:
|
205 |
st.subheader("Pie chart", divider = "orange")
|
206 |
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
|
|
210 |
plot_bgcolor='#F5FFFA'
|
211 |
)
|
212 |
st.plotly_chart(fig_pie)
|
213 |
+
|
214 |
with col2:
|
215 |
st.subheader("Bar chart", divider = "orange")
|
216 |
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
|
217 |
+
fig_pie.update_layout(
|
218 |
paper_bgcolor='#F5FFFA',
|
219 |
plot_bgcolor='#F5FFFA'
|
220 |
)
|
221 |
st.plotly_chart(fig_bar)
|
222 |
+
|
223 |
# Most Frequent Entities
|
224 |
st.subheader("Most Frequent Entities", divider="orange")
|
225 |
word_counts = df['text'].value_counts().reset_index()
|
|
|
228 |
if not repeating_entities.empty:
|
229 |
st.dataframe(repeating_entities, use_container_width=True)
|
230 |
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
|
231 |
+
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'},
|
|
|
232 |
paper_bgcolor='#F5FFFA',
|
233 |
+
plot_bgcolor='#F5FFFA')
|
|
|
234 |
st.plotly_chart(fig_repeating_bar)
|
235 |
else:
|
236 |
st.warning("No entities were found that occur more than once.")
|
237 |
+
|
238 |
# Download Section
|
239 |
st.divider()
|
240 |
+
|
241 |
dfa = pd.DataFrame(
|
242 |
data={
|
243 |
'Column Name': ['text', 'label', 'score', 'start', 'end', 'category'],
|
|
|
255 |
with zipfile.ZipFile(buf, "w") as myzip:
|
256 |
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
257 |
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
258 |
+
|
259 |
with stylable_container(
|
260 |
key="download_button",
|
261 |
css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
|
|
|
266 |
file_name="nlpblogs_results.zip",
|
267 |
mime="application/zip",
|
268 |
)
|
269 |
+
|
270 |
if comet_initialized:
|
271 |
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
|
272 |
experiment.end()
|
273 |
else: # If df is empty
|
274 |
st.warning("No entities were found in the provided text.")
|
275 |
+
|
276 |
+
end_time = time.time()
|
277 |
elapsed_time = end_time - start_time
|
278 |
st.text("")
|
279 |
st.text("")
|
280 |
+
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
|