Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +3 -3
src/streamlit_app.py
CHANGED
@@ -65,7 +65,7 @@ st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
|
65 |
st.subheader("HR.ai", divider="green")
|
66 |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
67 |
expander = st.expander("**Important notes**")
|
68 |
-
expander.write("""**Named Entities:** This HR.ai predicts
|
69 |
|
70 |
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
71 |
|
@@ -106,7 +106,7 @@ if not comet_initialized:
|
|
106 |
st.warning("Comet ML not initialized. Check environment variables.")
|
107 |
|
108 |
# --- Label Definitions ---
|
109 |
-
labels = ["Email", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country", "Date_of_birth", "Gender", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired", "Job_title", "Employment_type", "Year", "Date", "Company", "Organization", "Role", "Position", "Performance_review", "Performance_rating", "Performance_score", "Sick_days", "Vacation_days", "Leave_of_absence", "Holidays", "Pension", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "
|
110 |
|
111 |
# Create a mapping dictionary for labels to categories
|
112 |
category_mapping = {
|
@@ -116,7 +116,7 @@ category_mapping = {
|
|
116 |
"Employment Information" : ["Job_title", "Employment_type", "Year", "Date", "Company", "Organization", "Role", "Position"],
|
117 |
"Performance": ["Performance_review", "Performance_rating", "Performance_score"],
|
118 |
"Attendance": ["Sick_days", "Vacation_days", "Leave_of_absence", "Holidays"],
|
119 |
-
"Benefits": ["Pension", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance"
|
120 |
"Compensation": ["Pay_rate", "Hourly_wage", "Annual_salary", "Overtime_pay"],
|
121 |
"Deductions": ["Tax", "Social_security", "Deductions"],
|
122 |
"Recruitment & Sourcing": ["Job_posting", "Job_description", "Interview_type", "Applicant", "Candidate", "Referral", "Job_board", "Recruiter"],
|
|
|
65 |
st.subheader("HR.ai", divider="green")
|
66 |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
67 |
expander = st.expander("**Important notes**")
|
68 |
+
expander.write("""**Named Entities:** This HR.ai predicts fifty-nine (59) labels:"Email", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country", "Date_of_birth", "Gender", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired", "Job_title", "Employment_type", "Year", "Date", "Company", "Organization", "Role", "Position","Performance_review", "Performance_rating", "Performance_score", "Sick_days", "Vacation_days", "Leave_of_absence", "Holidays", "Pension", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Hourly_wage", "Annual_salary", "Overtime_pay", "Tax", "Social_security", "Deductions", "Job_posting", "Job_description", "Interview_type", "Applicant", "Candidate", "Referral", "Job_board", "Recruiter","Contract", "Offer_letter", "Agreement", "Training_course", "Certification", "Skill"
|
69 |
|
70 |
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
71 |
|
|
|
106 |
st.warning("Comet ML not initialized. Check environment variables.")
|
107 |
|
108 |
# --- Label Definitions ---
|
109 |
+
labels = ["Email", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country", "Date_of_birth", "Gender", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired", "Job_title", "Employment_type", "Year", "Date", "Company", "Organization", "Role", "Position", "Performance_review", "Performance_rating", "Performance_score", "Sick_days", "Vacation_days", "Leave_of_absence", "Holidays", "Pension", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Hourly_wage", "Annual_salary", "Overtime_pay", "Tax", "Social_security", "Deductions", "Job_posting", "Job_description", "Interview_type", "Applicant", "Candidate", "Referral", "Job_board", "Recruiter", "Contract", "Offer_letter", "Agreement", "Training_course", "Certification", "Skill"]
|
110 |
|
111 |
# Create a mapping dictionary for labels to categories
|
112 |
category_mapping = {
|
|
|
116 |
"Employment Information" : ["Job_title", "Employment_type", "Year", "Date", "Company", "Organization", "Role", "Position"],
|
117 |
"Performance": ["Performance_review", "Performance_rating", "Performance_score"],
|
118 |
"Attendance": ["Sick_days", "Vacation_days", "Leave_of_absence", "Holidays"],
|
119 |
+
"Benefits": ["Pension", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance"],
|
120 |
"Compensation": ["Pay_rate", "Hourly_wage", "Annual_salary", "Overtime_pay"],
|
121 |
"Deductions": ["Tax", "Social_security", "Deductions"],
|
122 |
"Recruitment & Sourcing": ["Job_posting", "Job_description", "Interview_type", "Applicant", "Candidate", "Referral", "Job_board", "Recruiter"],
|