Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +44 -94
src/streamlit_app.py
CHANGED
@@ -13,7 +13,6 @@ from typing import Optional
|
|
13 |
from gliner import GLiNER
|
14 |
from comet_ml import Experiment
|
15 |
|
16 |
-
|
17 |
st.markdown(
|
18 |
"""
|
19 |
<style>
|
@@ -27,7 +26,7 @@ st.markdown(
|
|
27 |
background-color: #B2F2B2; /* A pale green for the sidebar */
|
28 |
secondary-background-color: #B2F2B2;
|
29 |
}
|
30 |
-
|
31 |
/* Expander background color */
|
32 |
.streamlit-expanderContent {
|
33 |
background-color: #F5FFFA;
|
@@ -61,99 +60,55 @@ st.markdown(
|
|
61 |
unsafe_allow_html=True
|
62 |
)
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
|
|
65 |
|
|
|
66 |
|
|
|
67 |
|
|
|
68 |
|
69 |
-
|
70 |
-
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
71 |
|
72 |
-
|
73 |
-
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
74 |
-
|
75 |
-
expander = st.expander("**Important notes**")
|
76 |
-
expander.write("""
|
77 |
-
**Named Entities:** This HR.ai predicts sixty (60) labels:
|
78 |
-
"Email", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country", "Date_of_birth", "Gender", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired", "Job_title", "Employment_type", "Year", "Date", "Company", "Organization", "Role", "Position",
|
79 |
-
"Performance_review", "Performance_rating", "Performance_score", "Sick_days", "Vacation_days", "Leave_of_absence", "Holidays", "Pension", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance","Retire_date",
|
80 |
-
"Pay_rate", "Hourly_wage", "Annual_salary", "Overtime_pay", "Tax", "Social_security", "Deductions", "Job_posting", "Job_description", "Interview_type", "Applicant", "Candidate", "Referral", "Job_board", "Recruiter",
|
81 |
-
"Contract", "Offer_letter", "Agreement", "Training_course", "Certification", "Skill"
|
82 |
-
|
83 |
-
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
84 |
-
|
85 |
-
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
|
86 |
-
|
87 |
-
**Usage Limits:** You can request results unlimited times for one (1) month.
|
88 |
-
|
89 |
-
**Supported Languages:** English, German, French, Italian, Spanish, Portuguese
|
90 |
-
|
91 |
-
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
|
92 |
-
|
93 |
-
For any errors or inquiries, please contact us at [email protected]
|
94 |
-
""")
|
95 |
|
96 |
with st.sidebar:
|
97 |
-
|
98 |
-
|
99 |
st.write("Use the following code to embed the HR.ai web app on your website. Feel free to adjust the width and height values to fit your page.")
|
100 |
code = '''
|
101 |
-
<iframe
|
102 |
-
src="https://aiecosystem-hr-ai.hf.space"
|
103 |
-
frameborder="0"
|
104 |
-
width="850"
|
105 |
-
height="450"
|
106 |
-
></iframe>
|
107 |
'''
|
108 |
st.code(code, language="html")
|
109 |
-
|
110 |
st.text("")
|
111 |
st.text("")
|
112 |
st.divider()
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
st.subheader("Ready to build your own NER Web App? 🚀", divider="orange")
|
117 |
st.link_button("NER Builder", "https://nlpblogs.com", type="primary")
|
118 |
|
119 |
-
|
120 |
-
|
121 |
# --- Comet ML Setup ---
|
122 |
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
123 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
124 |
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
125 |
-
|
126 |
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
|
|
|
127 |
if not comet_initialized:
|
128 |
st.warning("Comet ML not initialized. Check environment variables.")
|
129 |
|
130 |
# --- Label Definitions ---
|
131 |
-
labels = [
|
132 |
-
"Email", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country",
|
133 |
-
"Date_of_birth", "Gender", "Marital_status", "Person",
|
134 |
-
"Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired",
|
135 |
-
"Job_title", "Employment_type", "Year", "Date", "Company", "Organization", "Role", "Position",
|
136 |
-
"Performance_review", "Performance_rating", "Performance_score",
|
137 |
-
"Sick_days", "Vacation_days", "Leave_of_absence", "Holidays",
|
138 |
-
"Pension", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance","Retire_date",
|
139 |
-
"Pay_rate", "Hourly_wage", "Annual_salary", "Overtime_pay",
|
140 |
-
"Tax", "Social_security", "Deductions",
|
141 |
-
"Job_posting", "Job_description", "Interview_type", "Applicant", "Candidate", "Referral", "Job_board", "Recruiter",
|
142 |
-
"Contract", "Offer_letter", "Agreement",
|
143 |
-
"Training_course", "Certification", "Skill"]
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
|
148 |
# Create a mapping dictionary for labels to categories
|
149 |
category_mapping = {
|
150 |
-
|
151 |
-
|
152 |
"Contact Information": ["Email", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country"],
|
153 |
"Personal Details": ["Date_of_birth", "Gender", "Marital_status", "Person"],
|
154 |
"Employment Status": ["Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired"],
|
155 |
"Employment Information" : ["Job_title", "Employment_type", "Year", "Date", "Company", "Organization", "Role", "Position"],
|
156 |
-
|
157 |
"Performance": ["Performance_review", "Performance_rating", "Performance_score"],
|
158 |
"Attendance": ["Sick_days", "Vacation_days", "Leave_of_absence", "Holidays"],
|
159 |
"Benefits": ["Pension", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance","Retire_date"],
|
@@ -164,22 +119,17 @@ category_mapping = {
|
|
164 |
"Professional_Development": ["Training_course", "Certification", "Skill"]
|
165 |
}
|
166 |
|
167 |
-
|
168 |
# --- Model Loading ---
|
169 |
@st.cache_resource
|
170 |
def load_ner_model():
|
171 |
"""Loads the GLiNER model and caches it."""
|
172 |
try:
|
173 |
-
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2)
|
174 |
-
|
175 |
except Exception as e:
|
176 |
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
177 |
st.stop()
|
178 |
-
|
179 |
model = load_ner_model()
|
180 |
|
181 |
-
|
182 |
-
|
183 |
# Flatten the mapping to a single dictionary
|
184 |
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
|
185 |
|
@@ -205,7 +155,6 @@ if st.button("Results"):
|
|
205 |
|
206 |
if not df.empty:
|
207 |
df['category'] = df['label'].map(reverse_category_mapping)
|
208 |
-
|
209 |
if comet_initialized:
|
210 |
experiment = Experiment(
|
211 |
api_key=COMET_API_KEY,
|
@@ -214,9 +163,22 @@ if st.button("Results"):
|
|
214 |
)
|
215 |
experiment.log_parameter("input_text", text)
|
216 |
experiment.log_table("predicted_entities", df)
|
217 |
-
|
218 |
st.subheader("Extracted Entities", divider = "orange")
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
with st.expander("See Glossary of tags"):
|
222 |
st.write('''
|
@@ -227,34 +189,30 @@ if st.button("Results"):
|
|
227 |
- **start**: ['index of the start of the corresponding entity']
|
228 |
- **end**: ['index of the end of the corresponding entity']
|
229 |
''')
|
230 |
-
|
231 |
st.divider()
|
232 |
-
|
233 |
-
|
234 |
# Tree map
|
235 |
st.subheader("Tree map", divider = "orange")
|
236 |
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
|
237 |
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
238 |
st.plotly_chart(fig_treemap)
|
239 |
-
|
240 |
# Pie and Bar charts
|
241 |
grouped_counts = df['category'].value_counts().reset_index()
|
242 |
grouped_counts.columns = ['category', 'count']
|
243 |
-
|
244 |
col1, col2 = st.columns(2)
|
|
|
245 |
with col1:
|
246 |
st.subheader("Pie chart", divider = "orange")
|
247 |
-
fig_pie = px.pie(grouped_counts, values='count', names='category',
|
248 |
-
hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
249 |
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
250 |
st.plotly_chart(fig_pie)
|
251 |
-
|
252 |
with col2:
|
253 |
st.subheader("Bar chart", divider = "orange")
|
254 |
-
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True,
|
255 |
-
title='Occurrences of predicted categories')
|
256 |
st.plotly_chart(fig_bar)
|
257 |
-
|
258 |
# Most Frequent Entities
|
259 |
st.subheader("Most Frequent Entities", divider="orange")
|
260 |
word_counts = df['text'].value_counts().reset_index()
|
@@ -267,15 +225,10 @@ if st.button("Results"):
|
|
267 |
st.plotly_chart(fig_repeating_bar)
|
268 |
else:
|
269 |
st.warning("No entities were found that occur more than once.")
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
# Download Section
|
277 |
st.divider()
|
278 |
-
|
279 |
dfa = pd.DataFrame(
|
280 |
data={
|
281 |
'Column Name': ['text', 'label', 'score', 'start', 'end', 'category'],
|
@@ -289,12 +242,11 @@ if st.button("Results"):
|
|
289 |
]
|
290 |
}
|
291 |
)
|
292 |
-
|
293 |
buf = io.BytesIO()
|
294 |
with zipfile.ZipFile(buf, "w") as myzip:
|
295 |
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
296 |
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
297 |
-
|
298 |
with stylable_container(
|
299 |
key="download_button",
|
300 |
css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
|
@@ -305,17 +257,15 @@ if st.button("Results"):
|
|
305 |
file_name="nlpblogs_results.zip",
|
306 |
mime="application/zip",
|
307 |
)
|
308 |
-
|
309 |
if comet_initialized:
|
310 |
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
|
311 |
experiment.end()
|
312 |
-
|
313 |
else: # If df is empty
|
314 |
st.warning("No entities were found in the provided text.")
|
315 |
-
|
316 |
end_time = time.time()
|
317 |
elapsed_time = end_time - start_time
|
318 |
-
|
319 |
st.text("")
|
320 |
st.text("")
|
321 |
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
|
|
|
13 |
from gliner import GLiNER
|
14 |
from comet_ml import Experiment
|
15 |
|
|
|
16 |
st.markdown(
|
17 |
"""
|
18 |
<style>
|
|
|
26 |
background-color: #B2F2B2; /* A pale green for the sidebar */
|
27 |
secondary-background-color: #B2F2B2;
|
28 |
}
|
29 |
+
|
30 |
/* Expander background color */
|
31 |
.streamlit-expanderContent {
|
32 |
background-color: #F5FFFA;
|
|
|
60 |
unsafe_allow_html=True
|
61 |
)
|
62 |
|
63 |
+
# --- Page Configuration and UI Elements ---
|
64 |
+
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
65 |
+
st.subheader("HR.ai", divider="orange")
|
66 |
+
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
67 |
+
expander = st.expander("**Important notes**")
|
68 |
+
expander.write("""**Named Entities:** This HR.ai predicts sixty (60) labels:"Email", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country", "Date_of_birth", "Gender", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired", "Job_title", "Employment_type", "Year", "Date", "Company", "Organization", "Role", "Position","Performance_review", "Performance_rating", "Performance_score", "Sick_days", "Vacation_days", "Leave_of_absence", "Holidays", "Pension", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Retire_date", "Pay_rate", "Hourly_wage", "Annual_salary", "Overtime_pay", "Tax", "Social_security", "Deductions", "Job_posting", "Job_description", "Interview_type", "Applicant", "Candidate", "Referral", "Job_board", "Recruiter","Contract", "Offer_letter", "Agreement", "Training_course", "Certification", "Skill"
|
69 |
|
70 |
+
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
71 |
|
72 |
+
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
|
73 |
|
74 |
+
**Usage Limits:** You can request results unlimited times for one (1) month.
|
75 |
|
76 |
+
**Supported Languages:** English, German, French, Italian, Spanish, Portuguese
|
77 |
|
78 |
+
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
|
|
|
79 |
|
80 |
+
For any errors or inquiries, please contact us at info@nlpblogs.com""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
with st.sidebar:
|
|
|
|
|
83 |
st.write("Use the following code to embed the HR.ai web app on your website. Feel free to adjust the width and height values to fit your page.")
|
84 |
code = '''
|
85 |
+
<iframe src="https://aiecosystem-hr-ai.hf.space" frameborder="0" width="850" height="450"></iframe>
|
|
|
|
|
|
|
|
|
|
|
86 |
'''
|
87 |
st.code(code, language="html")
|
|
|
88 |
st.text("")
|
89 |
st.text("")
|
90 |
st.divider()
|
|
|
|
|
|
|
91 |
st.subheader("Ready to build your own NER Web App? 🚀", divider="orange")
|
92 |
st.link_button("NER Builder", "https://nlpblogs.com", type="primary")
|
93 |
|
|
|
|
|
94 |
# --- Comet ML Setup ---
|
95 |
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
96 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
97 |
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
|
|
98 |
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
|
99 |
+
|
100 |
if not comet_initialized:
|
101 |
st.warning("Comet ML not initialized. Check environment variables.")
|
102 |
|
103 |
# --- Label Definitions ---
|
104 |
+
labels = ["Email", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country", "Date_of_birth", "Gender", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired", "Job_title", "Employment_type", "Year", "Date", "Company", "Organization", "Role", "Position", "Performance_review", "Performance_rating", "Performance_score", "Sick_days", "Vacation_days", "Leave_of_absence", "Holidays", "Pension", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Retire_date", "Pay_rate", "Hourly_wage", "Annual_salary", "Overtime_pay", "Tax", "Social_security", "Deductions", "Job_posting", "Job_description", "Interview_type", "Applicant", "Candidate", "Referral", "Job_board", "Recruiter", "Contract", "Offer_letter", "Agreement", "Training_course", "Certification", "Skill"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
# Create a mapping dictionary for labels to categories
|
107 |
category_mapping = {
|
|
|
|
|
108 |
"Contact Information": ["Email", "Phone_number", "Street_address", "City", "State", "Zip_code", "Country"],
|
109 |
"Personal Details": ["Date_of_birth", "Gender", "Marital_status", "Person"],
|
110 |
"Employment Status": ["Full_time", "Part_time", "Contract", "Temporary", "Terminated", "Active", "Retired"],
|
111 |
"Employment Information" : ["Job_title", "Employment_type", "Year", "Date", "Company", "Organization", "Role", "Position"],
|
|
|
112 |
"Performance": ["Performance_review", "Performance_rating", "Performance_score"],
|
113 |
"Attendance": ["Sick_days", "Vacation_days", "Leave_of_absence", "Holidays"],
|
114 |
"Benefits": ["Pension", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance","Retire_date"],
|
|
|
119 |
"Professional_Development": ["Training_course", "Certification", "Skill"]
|
120 |
}
|
121 |
|
|
|
122 |
# --- Model Loading ---
|
123 |
@st.cache_resource
|
124 |
def load_ner_model():
|
125 |
"""Loads the GLiNER model and caches it."""
|
126 |
try:
|
127 |
+
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints= labels)
|
|
|
128 |
except Exception as e:
|
129 |
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
130 |
st.stop()
|
|
|
131 |
model = load_ner_model()
|
132 |
|
|
|
|
|
133 |
# Flatten the mapping to a single dictionary
|
134 |
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
|
135 |
|
|
|
155 |
|
156 |
if not df.empty:
|
157 |
df['category'] = df['label'].map(reverse_category_mapping)
|
|
|
158 |
if comet_initialized:
|
159 |
experiment = Experiment(
|
160 |
api_key=COMET_API_KEY,
|
|
|
163 |
)
|
164 |
experiment.log_parameter("input_text", text)
|
165 |
experiment.log_table("predicted_entities", df)
|
166 |
+
|
167 |
st.subheader("Extracted Entities", divider = "orange")
|
168 |
+
|
169 |
+
# Create tabs for each category
|
170 |
+
category_names = sorted(list(category_mapping.keys()))
|
171 |
+
category_tabs = st.tabs(category_names)
|
172 |
+
|
173 |
+
for i, category_name in enumerate(category_names):
|
174 |
+
with category_tabs[i]:
|
175 |
+
df_category_filtered = df[df['category'] == category_name]
|
176 |
+
if not df_category_filtered.empty:
|
177 |
+
st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
|
178 |
+
else:
|
179 |
+
st.info(f"No entities found for the '{category_name}' category.")
|
180 |
+
|
181 |
+
st.divider()
|
182 |
|
183 |
with st.expander("See Glossary of tags"):
|
184 |
st.write('''
|
|
|
189 |
- **start**: ['index of the start of the corresponding entity']
|
190 |
- **end**: ['index of the end of the corresponding entity']
|
191 |
''')
|
|
|
192 |
st.divider()
|
193 |
+
|
|
|
194 |
# Tree map
|
195 |
st.subheader("Tree map", divider = "orange")
|
196 |
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
|
197 |
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
198 |
st.plotly_chart(fig_treemap)
|
199 |
+
|
200 |
# Pie and Bar charts
|
201 |
grouped_counts = df['category'].value_counts().reset_index()
|
202 |
grouped_counts.columns = ['category', 'count']
|
|
|
203 |
col1, col2 = st.columns(2)
|
204 |
+
|
205 |
with col1:
|
206 |
st.subheader("Pie chart", divider = "orange")
|
207 |
+
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
|
|
208 |
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
209 |
st.plotly_chart(fig_pie)
|
210 |
+
|
211 |
with col2:
|
212 |
st.subheader("Bar chart", divider = "orange")
|
213 |
+
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
|
|
|
214 |
st.plotly_chart(fig_bar)
|
215 |
+
|
216 |
# Most Frequent Entities
|
217 |
st.subheader("Most Frequent Entities", divider="orange")
|
218 |
word_counts = df['text'].value_counts().reset_index()
|
|
|
225 |
st.plotly_chart(fig_repeating_bar)
|
226 |
else:
|
227 |
st.warning("No entities were found that occur more than once.")
|
228 |
+
|
|
|
|
|
|
|
|
|
|
|
229 |
# Download Section
|
230 |
st.divider()
|
231 |
+
|
232 |
dfa = pd.DataFrame(
|
233 |
data={
|
234 |
'Column Name': ['text', 'label', 'score', 'start', 'end', 'category'],
|
|
|
242 |
]
|
243 |
}
|
244 |
)
|
|
|
245 |
buf = io.BytesIO()
|
246 |
with zipfile.ZipFile(buf, "w") as myzip:
|
247 |
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
248 |
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
249 |
+
|
250 |
with stylable_container(
|
251 |
key="download_button",
|
252 |
css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
|
|
|
257 |
file_name="nlpblogs_results.zip",
|
258 |
mime="application/zip",
|
259 |
)
|
260 |
+
|
261 |
if comet_initialized:
|
262 |
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
|
263 |
experiment.end()
|
|
|
264 |
else: # If df is empty
|
265 |
st.warning("No entities were found in the provided text.")
|
266 |
+
|
267 |
end_time = time.time()
|
268 |
elapsed_time = end_time - start_time
|
|
|
269 |
st.text("")
|
270 |
st.text("")
|
271 |
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
|