Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +45 -39
src/streamlit_app.py
CHANGED
@@ -20,43 +20,43 @@ st.markdown(
|
|
20 |
<style>
|
21 |
/* Main app background and text color */
|
22 |
.stApp {
|
23 |
-
background-color: #
|
24 |
-
color: #
|
25 |
}
|
|
|
26 |
/* Sidebar background color */
|
27 |
.css-1d36184 {
|
28 |
-
background-color: #
|
29 |
-
secondary-background-color: #
|
30 |
-
}
|
31 |
-
|
32 |
-
/* Expander background color */
|
33 |
-
.streamlit-expanderContent {
|
34 |
-
background-color: #E0FFFF;
|
35 |
}
|
36 |
-
|
37 |
-
/* Expander
|
38 |
-
.streamlit-expanderHeader {
|
39 |
-
background-color: #
|
40 |
}
|
|
|
41 |
/* Text Area background and text color */
|
42 |
.stTextArea textarea {
|
43 |
-
background-color: #
|
44 |
-
color: #
|
45 |
}
|
|
|
46 |
/* Button background and text color */
|
47 |
.stButton > button {
|
48 |
-
background-color: #
|
49 |
-
color: #
|
50 |
}
|
|
|
51 |
/* Warning box background and text color */
|
52 |
.stAlert.st-warning {
|
53 |
-
background-color: #
|
54 |
-
color: #
|
55 |
}
|
|
|
56 |
/* Success box background and text color */
|
57 |
.stAlert.st-success {
|
58 |
-
background-color: #
|
59 |
-
color: #
|
60 |
}
|
61 |
</style>
|
62 |
""",
|
@@ -66,22 +66,28 @@ st.markdown(
|
|
66 |
|
67 |
|
68 |
|
69 |
-
|
70 |
# --- Page Configuration and UI Elements ---
|
71 |
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
72 |
-
st.subheader("
|
73 |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
74 |
expander = st.expander("**Important notes**")
|
75 |
-
expander.write("""**Named Entities:** This
|
|
|
|
|
76 |
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
|
|
77 |
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
|
|
|
78 |
**Usage Limits:** You can request results unlimited times for one (1) month.
|
|
|
79 |
**Supported Languages:** English
|
|
|
80 |
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
|
|
|
81 |
For any errors or inquiries, please contact us at [email protected]""")
|
82 |
|
83 |
with st.sidebar:
|
84 |
-
st.write("Use the following code to embed the
|
85 |
code = '''
|
86 |
<iframe
|
87 |
src="https://aiecosystem-storycraft.hf.space"
|
@@ -94,7 +100,7 @@ with st.sidebar:
|
|
94 |
st.text("")
|
95 |
st.text("")
|
96 |
st.divider()
|
97 |
-
st.subheader("🚀 Ready to build your own NER Web App?", divider="
|
98 |
st.link_button("NER Builder", "https://nlpblogs.com", type="primary")
|
99 |
|
100 |
# --- Comet ML Setup ---
|
@@ -149,7 +155,7 @@ category_mapping = {
|
|
149 |
def load_ner_model():
|
150 |
"""Loads the GLiNER model and caches it."""
|
151 |
try:
|
152 |
-
return GLiNER.from_pretrained("
|
153 |
except Exception as e:
|
154 |
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
155 |
st.stop()
|
@@ -189,7 +195,7 @@ if st.button("Results"):
|
|
189 |
experiment.log_parameter("input_text", text)
|
190 |
experiment.log_table("predicted_entities", df)
|
191 |
|
192 |
-
st.subheader("Grouped Entities by Category", divider = "
|
193 |
|
194 |
# Create tabs for each category
|
195 |
category_names = sorted(list(category_mapping.keys()))
|
@@ -217,9 +223,9 @@ if st.button("Results"):
|
|
217 |
st.divider()
|
218 |
|
219 |
# Tree map
|
220 |
-
st.subheader("Tree map", divider = "
|
221 |
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
|
222 |
-
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#
|
223 |
st.plotly_chart(fig_treemap)
|
224 |
|
225 |
# Pie and Bar charts
|
@@ -228,12 +234,12 @@ if st.button("Results"):
|
|
228 |
col1, col2 = st.columns(2)
|
229 |
|
230 |
with col1:
|
231 |
-
st.subheader("Pie chart", divider = "
|
232 |
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
233 |
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
234 |
fig_pie.update_layout(
|
235 |
-
paper_bgcolor='#
|
236 |
-
plot_bgcolor='#
|
237 |
)
|
238 |
st.plotly_chart(fig_pie)
|
239 |
|
@@ -241,16 +247,16 @@ if st.button("Results"):
|
|
241 |
|
242 |
|
243 |
with col2:
|
244 |
-
st.subheader("Bar chart", divider = "
|
245 |
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
|
246 |
fig_bar.update_layout( # Changed from fig_pie to fig_bar
|
247 |
-
paper_bgcolor='#
|
248 |
-
plot_bgcolor='#
|
249 |
)
|
250 |
st.plotly_chart(fig_bar)
|
251 |
|
252 |
# Most Frequent Entities
|
253 |
-
st.subheader("Most Frequent Entities", divider="
|
254 |
word_counts = df['text'].value_counts().reset_index()
|
255 |
word_counts.columns = ['Entity', 'Count']
|
256 |
repeating_entities = word_counts[word_counts['Count'] > 1]
|
@@ -258,8 +264,8 @@ if st.button("Results"):
|
|
258 |
st.dataframe(repeating_entities, use_container_width=True)
|
259 |
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
|
260 |
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'},
|
261 |
-
paper_bgcolor='#
|
262 |
-
plot_bgcolor='#
|
263 |
st.plotly_chart(fig_repeating_bar)
|
264 |
else:
|
265 |
st.warning("No entities were found that occur more than once.")
|
|
|
20 |
<style>
|
21 |
/* Main app background and text color */
|
22 |
.stApp {
|
23 |
+
background-color: #F3E5F5; /* A very light purple */
|
24 |
+
color: #1A0A26; /* Dark purple for the text */
|
25 |
}
|
26 |
+
|
27 |
/* Sidebar background color */
|
28 |
.css-1d36184 {
|
29 |
+
background-color: #D1C4E9; /* A medium light purple */
|
30 |
+
secondary-background-color: #D1C4E9;
|
|
|
|
|
|
|
|
|
|
|
31 |
}
|
32 |
+
|
33 |
+
/* Expander background color and header */
|
34 |
+
.streamlit-expanderContent, .streamlit-expanderHeader {
|
35 |
+
background-color: #F3E5F5;
|
36 |
}
|
37 |
+
|
38 |
/* Text Area background and text color */
|
39 |
.stTextArea textarea {
|
40 |
+
background-color: #B39DDB; /* A slightly darker medium purple */
|
41 |
+
color: #1A0A26; /* Dark purple for text */
|
42 |
}
|
43 |
+
|
44 |
/* Button background and text color */
|
45 |
.stButton > button {
|
46 |
+
background-color: #B39DDB;
|
47 |
+
color: #1A0A26;
|
48 |
}
|
49 |
+
|
50 |
/* Warning box background and text color */
|
51 |
.stAlert.st-warning {
|
52 |
+
background-color: #9575CD; /* A medium-dark purple for the warning box */
|
53 |
+
color: #1A0A26;
|
54 |
}
|
55 |
+
|
56 |
/* Success box background and text color */
|
57 |
.stAlert.st-success {
|
58 |
+
background-color: #9575CD; /* A medium-dark purple for the success box */
|
59 |
+
color: #1A0A26;
|
60 |
}
|
61 |
</style>
|
62 |
""",
|
|
|
66 |
|
67 |
|
68 |
|
|
|
69 |
# --- Page Configuration and UI Elements ---
|
70 |
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
71 |
+
st.subheader("MediaTagger", divider="violet")
|
72 |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
73 |
expander = st.expander("**Important notes**")
|
74 |
+
expander.write("""**Named Entities:** This MediaTagger web app predicts eighteen (18) labels: 'person', 'organization', 'location', 'date', 'time', 'event', 'title', 'product', 'law', 'policy', 'work of art', 'geopolitical entity', 'number', 'cause of death',
|
75 |
+
'weapon', 'vehicle', 'facility', 'temporal expression'
|
76 |
+
|
77 |
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
78 |
+
|
79 |
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
|
80 |
+
|
81 |
**Usage Limits:** You can request results unlimited times for one (1) month.
|
82 |
+
|
83 |
**Supported Languages:** English
|
84 |
+
|
85 |
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
|
86 |
+
|
87 |
For any errors or inquiries, please contact us at [email protected]""")
|
88 |
|
89 |
with st.sidebar:
|
90 |
+
st.write("Use the following code to embed the MediaTagger web app on your website. Feel free to adjust the width and height values to fit your page.")
|
91 |
code = '''
|
92 |
<iframe
|
93 |
src="https://aiecosystem-storycraft.hf.space"
|
|
|
100 |
st.text("")
|
101 |
st.text("")
|
102 |
st.divider()
|
103 |
+
st.subheader("🚀 Ready to build your own NER Web App?", divider="violet")
|
104 |
st.link_button("NER Builder", "https://nlpblogs.com", type="primary")
|
105 |
|
106 |
# --- Comet ML Setup ---
|
|
|
155 |
def load_ner_model():
|
156 |
"""Loads the GLiNER model and caches it."""
|
157 |
try:
|
158 |
+
return GLiNER.from_pretrained("EmergentMethods/gliner_large_news-v2.1", nested_ner=True, num_gen_sequences=2, gen_constraints= labels)
|
159 |
except Exception as e:
|
160 |
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
161 |
st.stop()
|
|
|
195 |
experiment.log_parameter("input_text", text)
|
196 |
experiment.log_table("predicted_entities", df)
|
197 |
|
198 |
+
st.subheader("Grouped Entities by Category", divider = "violet")
|
199 |
|
200 |
# Create tabs for each category
|
201 |
category_names = sorted(list(category_mapping.keys()))
|
|
|
223 |
st.divider()
|
224 |
|
225 |
# Tree map
|
226 |
+
st.subheader("Tree map", divider = "violet")
|
227 |
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
|
228 |
+
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F3E5F5', plot_bgcolor='#F3E5F5')
|
229 |
st.plotly_chart(fig_treemap)
|
230 |
|
231 |
# Pie and Bar charts
|
|
|
234 |
col1, col2 = st.columns(2)
|
235 |
|
236 |
with col1:
|
237 |
+
st.subheader("Pie chart", divider = "violet")
|
238 |
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
239 |
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
240 |
fig_pie.update_layout(
|
241 |
+
paper_bgcolor='#F3E5F5',
|
242 |
+
plot_bgcolor='#F3E5F5'
|
243 |
)
|
244 |
st.plotly_chart(fig_pie)
|
245 |
|
|
|
247 |
|
248 |
|
249 |
with col2:
|
250 |
+
st.subheader("Bar chart", divider = "violet")
|
251 |
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
|
252 |
fig_bar.update_layout( # Changed from fig_pie to fig_bar
|
253 |
+
paper_bgcolor='#F3E5F5',
|
254 |
+
plot_bgcolor='#F3E5F5'
|
255 |
)
|
256 |
st.plotly_chart(fig_bar)
|
257 |
|
258 |
# Most Frequent Entities
|
259 |
+
st.subheader("Most Frequent Entities", divider="violet")
|
260 |
word_counts = df['text'].value_counts().reset_index()
|
261 |
word_counts.columns = ['Entity', 'Count']
|
262 |
repeating_entities = word_counts[word_counts['Count'] > 1]
|
|
|
264 |
st.dataframe(repeating_entities, use_container_width=True)
|
265 |
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
|
266 |
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'},
|
267 |
+
paper_bgcolor='#F3E5F5',
|
268 |
+
plot_bgcolor='#F3E5F5')
|
269 |
st.plotly_chart(fig_repeating_bar)
|
270 |
else:
|
271 |
st.warning("No entities were found that occur more than once.")
|