AIEcosystem commited on
Commit
913b86b
·
verified ·
1 Parent(s): 94a7ed3

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +307 -38
src/streamlit_app.py CHANGED
@@ -1,40 +1,309 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.environ['HF_HOME'] = '/tmp'
3
+ import time
4
  import streamlit as st
5
+ import pandas as pd
6
+ import io
7
+ import plotly.express as px
8
+ import zipfile
9
+ import json
10
+ from cryptography.fernet import Fernet
11
+ from streamlit_extras.stylable_container import stylable_container
12
+ from typing import Optional
13
+ from gliner import GLiNER
14
+ from comet_ml import Experiment
15
+
16
+
17
+
18
+ st.markdown(
19
+ """
20
+ <style>
21
+ /* Main app background and text color */
22
+ .stApp {
23
+ background-color: #E0FFFF; /* Light cyan, a very pale blue */
24
+ color: #000000; /* Black for the text */
25
+ }
26
+ /* Sidebar background color */
27
+ .css-1d36184 {
28
+ background-color: #ADD8E6; /* Light blue for the sidebar */
29
+ secondary-background-color: #ADD8E6;
30
+ }
31
+
32
+ /* Expander background color */
33
+ .streamlit-expanderContent {
34
+ background-color: #E0FFFF;
35
+ }
36
+
37
+ /* Expander header background color */
38
+ .streamlit-expanderHeader {
39
+ background-color: #E0FFFF;
40
+ }
41
+ /* Text Area background and text color */
42
+ .stTextArea textarea {
43
+ background-color: #B0E0E6; /* Powder blue, a light, soft blue */
44
+ color: #000000; /* Black for text */
45
+ }
46
+ /* Button background and text color */
47
+ .stButton > button {
48
+ background-color: #B0E0E6;
49
+ color: #000000;
50
+ }
51
+ /* Warning box background and text color */
52
+ .stAlert.st-warning {
53
+ background-color: #87CEEB; /* Sky blue for the warning box */
54
+ color: #000000;
55
+ }
56
+ /* Success box background and text color */
57
+ .stAlert.st-success {
58
+ background-color: #87CEEB; /* Sky blue for the success box */
59
+ color: #000000;
60
+ }
61
+ </style>
62
+ """,
63
+ unsafe_allow_html=True
64
+ )
65
+
66
+
67
+
68
+
69
+
70
+ # --- Page Configuration and UI Elements ---
71
+ st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
72
+ st.subheader("StoryCraft", divider="blue")
73
+ st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
74
+ expander = st.expander("**Important notes**")
75
+ expander.write("""**Named Entities:** This StoryCraft web app predicts eighteen (18) labels: "Person", "Organization", "Location", "Date", "Time", "Quantity", "Product", "Event", "Title", "Job_title", "Artwork", "Media", "URL", "Website", "Hashtag", "Email", "IP_address", "File_path"
76
+ Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
77
+ **How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
78
+ **Usage Limits:** You can request results unlimited times for one (1) month.
79
+ **Supported Languages:** English
80
+ **Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
81
+ For any errors or inquiries, please contact us at [email protected]""")
82
+
83
+ with st.sidebar:
84
+ st.write("Use the following code to embed the StoryCraft web app on your website. Feel free to adjust the width and height values to fit your page.")
85
+ code = '''
86
+ <iframe
87
+ src="https://aiecosystem-storycraft.hf.space"
88
+ frameborder="0"
89
+ width="850"
90
+ height="450"
91
+ ></iframe>
92
+ '''
93
+ st.code(code, language="html")
94
+ st.text("")
95
+ st.text("")
96
+ st.divider()
97
+ st.subheader("🚀 Ready to build your own NER Web App?", divider="blue")
98
+ st.link_button("NER Builder", "https://nlpblogs.com", type="primary")
99
+
100
+ # --- Comet ML Setup ---
101
+ COMET_API_KEY = os.environ.get("COMET_API_KEY")
102
+ COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
103
+ COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
104
+ comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
105
+
106
+ if not comet_initialized:
107
+ st.warning("Comet ML not initialized. Check environment variables.")
108
+
109
+ # --- Label Definitions ---
110
+ labels = [
111
+ 'person',
112
+ 'organization',
113
+ 'location',
114
+ 'date',
115
+ 'time',
116
+ 'event',
117
+ 'title',
118
+ 'product',
119
+ 'law',
120
+ 'policy',
121
+ 'work of art',
122
+ 'geopolitical entity',
123
+ 'number',
124
+ 'cause of death',
125
+ 'weapon',
126
+ 'vehicle',
127
+ 'facility',
128
+ 'temporal expression',
129
+ ]
130
+
131
+
132
+ # Corrected mapping dictionary
133
+
134
+ # Create a mapping dictionary for labels to categories
135
+ category_mapping = {
136
+ "People & Groups": ["person", "organization", "title"],
137
+ "Topics & Objects": ["event", "product", "law", "policy", "work of art", "weapon", "vehicle"],
138
+ "Temporal": ["date", "time", "temporal expression"],
139
+ "Locations": ["location", "geopolitical entity", "facility"],
140
+ "Quantitative & Contextual": ["number", "cause of death"]
141
+ }
142
+
143
+
144
+
145
+
146
+
147
+ # --- Model Loading ---
148
+ @st.cache_resource
149
+ def load_ner_model():
150
+ """Loads the GLiNER model and caches it."""
151
+ try:
152
+ return GLiNER.from_pretrained("gliner-community/gliner_large-v2.5", nested_ner=True, num_gen_sequences=2, gen_constraints= labels)
153
+ except Exception as e:
154
+ st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
155
+ st.stop()
156
+ model = load_ner_model()
157
+
158
+ # Flatten the mapping to a single dictionary
159
+ reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
160
+
161
+ # --- Text Input and Clear Button ---
162
+ text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area')
163
+
164
+ def clear_text():
165
+ """Clears the text area."""
166
+ st.session_state['my_text_area'] = ""
167
+
168
+ st.button("Clear text", on_click=clear_text)
169
+
170
+
171
+ # --- Results Section ---
172
+ if st.button("Results"):
173
+ start_time = time.time()
174
+ if not text.strip():
175
+ st.warning("Please enter some text to extract entities.")
176
+ else:
177
+ with st.spinner("Extracting entities...", show_time=True):
178
+ entities = model.predict_entities(text, labels)
179
+ df = pd.DataFrame(entities)
180
+
181
+ if not df.empty:
182
+ df['category'] = df['label'].map(reverse_category_mapping)
183
+ if comet_initialized:
184
+ experiment = Experiment(
185
+ api_key=COMET_API_KEY,
186
+ workspace=COMET_WORKSPACE,
187
+ project_name=COMET_PROJECT_NAME,
188
+ )
189
+ experiment.log_parameter("input_text", text)
190
+ experiment.log_table("predicted_entities", df)
191
+
192
+ st.subheader("Grouped Entities by Category", divider = "blue")
193
+
194
+ # Create tabs for each category
195
+ category_names = sorted(list(category_mapping.keys()))
196
+ category_tabs = st.tabs(category_names)
197
+
198
+ for i, category_name in enumerate(category_names):
199
+ with category_tabs[i]:
200
+ df_category_filtered = df[df['category'] == category_name]
201
+ if not df_category_filtered.empty:
202
+ st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
203
+ else:
204
+ st.info(f"No entities found for the '{category_name}' category.")
205
+
206
+
207
+
208
+ with st.expander("See Glossary of tags"):
209
+ st.write('''
210
+ - **text**: ['entity extracted from your text data']
211
+ - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
212
+ - **label**: ['label (tag) assigned to a given extracted entity']
213
+ - **category**: ['the high-level category for the label']
214
+ - **start**: ['index of the start of the corresponding entity']
215
+ - **end**: ['index of the end of the corresponding entity']
216
+ ''')
217
+ st.divider()
218
+
219
+ # Tree map
220
+ st.subheader("Tree map", divider = "blue")
221
+ fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
222
+ fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#E0FFFF', plot_bgcolor='#E0FFFF')
223
+ st.plotly_chart(fig_treemap)
224
+
225
+ # Pie and Bar charts
226
+ grouped_counts = df['category'].value_counts().reset_index()
227
+ grouped_counts.columns = ['category', 'count']
228
+ col1, col2 = st.columns(2)
229
+
230
+ with col1:
231
+ st.subheader("Pie chart", divider = "blue")
232
+ fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
233
+ fig_pie.update_traces(textposition='inside', textinfo='percent+label')
234
+ fig_pie.update_layout(
235
+ paper_bgcolor='#E0FFFF',
236
+ plot_bgcolor='#E0FFFF'
237
+ )
238
+ st.plotly_chart(fig_pie)
239
+
240
+
241
+
242
 
243
+ with col2:
244
+ st.subheader("Bar chart", divider = "blue")
245
+ fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
246
+ fig_bar.update_layout( # Changed from fig_pie to fig_bar
247
+ paper_bgcolor='#E0FFFF',
248
+ plot_bgcolor='#E0FFFF'
249
+ )
250
+ st.plotly_chart(fig_bar)
251
+
252
+ # Most Frequent Entities
253
+ st.subheader("Most Frequent Entities", divider="blue")
254
+ word_counts = df['text'].value_counts().reset_index()
255
+ word_counts.columns = ['Entity', 'Count']
256
+ repeating_entities = word_counts[word_counts['Count'] > 1]
257
+ if not repeating_entities.empty:
258
+ st.dataframe(repeating_entities, use_container_width=True)
259
+ fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
260
+ fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'},
261
+ paper_bgcolor='#E0FFFF',
262
+ plot_bgcolor='#E0FFFF')
263
+ st.plotly_chart(fig_repeating_bar)
264
+ else:
265
+ st.warning("No entities were found that occur more than once.")
266
+
267
+ # Download Section
268
+ st.divider()
269
+
270
+ dfa = pd.DataFrame(
271
+ data={
272
+ 'Column Name': ['text', 'label', 'score', 'start', 'end', 'category'],
273
+ 'Description': [
274
+ 'entity extracted from your text data',
275
+ 'label (tag) assigned to a given extracted entity',
276
+ 'accuracy score; how accurately a tag has been assigned to a given entity',
277
+ 'index of the start of the corresponding entity',
278
+ 'index of the end of the corresponding entity',
279
+ 'the broader category the entity belongs to',
280
+ ]
281
+ }
282
+ )
283
+ buf = io.BytesIO()
284
+ with zipfile.ZipFile(buf, "w") as myzip:
285
+ myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
286
+ myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
287
+
288
+ with stylable_container(
289
+ key="download_button",
290
+ css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
291
+ ):
292
+ st.download_button(
293
+ label="Download results and glossary (zip)",
294
+ data=buf.getvalue(),
295
+ file_name="nlpblogs_results.zip",
296
+ mime="application/zip",
297
+ )
298
+
299
+ if comet_initialized:
300
+ experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
301
+ experiment.end()
302
+ else: # If df is empty
303
+ st.warning("No entities were found in the provided text.")
304
+
305
+ end_time = time.time()
306
+ elapsed_time = end_time - start_time
307
+ st.text("")
308
+ st.text("")
309
+ st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")