Maria Tsilimos
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import io
|
5 |
+
|
6 |
+
from streamlit_extras.stylable_container import stylable_container
|
7 |
+
import plotly.express as px
|
8 |
+
import zipfile
|
9 |
+
import os
|
10 |
+
import re
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from cryptography.fernet import Fernet
|
14 |
+
from gliner import GLiNER
|
15 |
+
from PyPDF2 import PdfReader
|
16 |
+
import docx
|
17 |
+
from comet_ml import Experiment
|
18 |
+
|
19 |
+
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
20 |
+
|
21 |
+
# --- Configuration ---
|
22 |
+
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
23 |
+
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
24 |
+
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
25 |
+
|
26 |
+
comet_initialized = False
|
27 |
+
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
|
28 |
+
comet_initialized = True
|
29 |
+
|
30 |
+
# --- Initialize session state ---
|
31 |
+
if 'file_upload_attempts' not in st.session_state:
|
32 |
+
st.session_state['file_upload_attempts'] = 0
|
33 |
+
|
34 |
+
if 'encrypted_extracted_text' not in st.session_state:
|
35 |
+
st.session_state['encrypted_extracted_text'] = None
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
max_attempts = 10
|
40 |
+
|
41 |
+
|
42 |
+
GLINER_LABELS = ["Person", "Organization", "Phone number", "Address", "Passport number",
|
43 |
+
"Email", "Credit card number", "Social security number", "Health insurance ID number",
|
44 |
+
"Date of birth", "Mobile phone number", "Bank account number", "Medication", "CPF",
|
45 |
+
"Driver license number", "Tax identification number", "Medical condition",
|
46 |
+
"Identity card number", "National ID number", "IP address", "IBAN",
|
47 |
+
"Credit card expiration date", "Username", "Health insurance number",
|
48 |
+
"Registration number", "Student ID number", "Insurance number", "Flight number",
|
49 |
+
"Landline phone number", "Blood type", "CVV", "Reservation number",
|
50 |
+
"Digital signature", "Social media handle", "License plate number",
|
51 |
+
"CNPJ", "Postal code", "Passport_number", "Serial number", "Vehicle registration number",
|
52 |
+
"Credit card brand", "Fax number", "Visa number", "Insurance company", "Identity document number",
|
53 |
+
"Transaction number", "National health insurance number", "CVC", "Birth certificate number",
|
54 |
+
"Train ticket number", "Passport expiration date", "Social_security_number"]
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
@st.cache_resource
|
60 |
+
def load_ner_model():
|
61 |
+
"""
|
62 |
+
Loads the pre-trained GLiNER NER model (urchade/gliner_multi_pii-v1) and caches it.
|
63 |
+
This model is suitable for a wide range of custom entity types.
|
64 |
+
"""
|
65 |
+
try:
|
66 |
+
return GLiNER.from_pretrained("urchade/gliner_multi_pii-v1")
|
67 |
+
except Exception as e:
|
68 |
+
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
69 |
+
st.stop()
|
70 |
+
|
71 |
+
@st.cache_resource
|
72 |
+
def load_encryption_key():
|
73 |
+
"""
|
74 |
+
Loads the Fernet encryption key from environment variables.
|
75 |
+
This key is crucial for encrypting/decrypting sensitive data.
|
76 |
+
It's cached as a resource to be loaded only once.
|
77 |
+
"""
|
78 |
+
try:
|
79 |
+
# Get the key string from environment variables
|
80 |
+
key_str = os.environ.get("FERNET_KEY")
|
81 |
+
if not key_str:
|
82 |
+
raise ValueError("FERNET_KEY environment variable not set. Cannot perform encryption/decryption.")
|
83 |
+
|
84 |
+
# Fernet key must be bytes, so encode the string
|
85 |
+
key_bytes = key_str.encode('utf-8')
|
86 |
+
return Fernet(key_bytes)
|
87 |
+
except ValueError as ve:
|
88 |
+
st.error(f"Configuration Error: {ve}. Please ensure the 'FERNET_KEY' environment variable is set securely in your deployment environment (e.g., Hugging Face Spaces secrets, Render environment variables) or in a local .env file for development.")
|
89 |
+
st.stop() # Stop the app if the key is not found, as security is compromised
|
90 |
+
except Exception as e:
|
91 |
+
st.error(f"An unexpected error occurred while loading encryption key: {e}. Please check your key format and environment settings.")
|
92 |
+
st.stop()
|
93 |
+
|
94 |
+
# Initialize the Fernet cipher instance globally (cached)
|
95 |
+
fernet = load_encryption_key()
|
96 |
+
|
97 |
+
def encrypt_text(text_content: str) -> bytes:
|
98 |
+
"""
|
99 |
+
Encrypts a string using the loaded Fernet cipher.
|
100 |
+
The input string is first encoded to UTF-8 bytes.
|
101 |
+
"""
|
102 |
+
return fernet.encrypt(text_content.encode('utf-8'))
|
103 |
+
|
104 |
+
def decrypt_text(encrypted_bytes: bytes) -> str | None:
|
105 |
+
"""
|
106 |
+
Decrypts bytes using the loaded Fernet cipher.
|
107 |
+
Returns the decrypted string, or None if decryption fails (e.g., tampering).
|
108 |
+
"""
|
109 |
+
try:
|
110 |
+
return fernet.decrypt(encrypted_bytes).decode('utf-8')
|
111 |
+
except Exception as e:
|
112 |
+
st.error(f"Decryption failed. This might indicate data tampering or an incorrect encryption key. Error: {e}")
|
113 |
+
return None
|
114 |
+
|
115 |
+
# --- UI Elements ---
|
116 |
+
st.subheader("Multilingual PDF & DOCX Entity Finder", divider="orange") # Updated title
|
117 |
+
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
118 |
+
|
119 |
+
expander = st.expander("**Important notes on the Multilingual PDF & DOCX Entity Finder**") # Updated title
|
120 |
+
expander.write(f'''
|
121 |
+
**Named Entities:** This Multilingual PDF & DOCX Entity Finder predicts a wide range of custom labels, including: {", ".join([f'"{label}"' for label in GLINER_LABELS])}.
|
122 |
+
|
123 |
+
Results are presented in an easy-to-read table, visualized in an interactive tree map,
|
124 |
+
pie chart, and bar chart, and are available for download along with a Glossary of tags.
|
125 |
+
**Supported languages** English, French, German, Spanish, Portuguese, Italian
|
126 |
+
|
127 |
+
**How to Use:** Upload your PDF or DOCX file. Then, click the 'Results' button
|
128 |
+
to extract and tag entities in your text data.
|
129 |
+
|
130 |
+
**Usage Limits:** You can request results up to 10 times.
|
131 |
+
|
132 |
+
**Language settings:** Please check and adjust the language settings in
|
133 |
+
your computer, so the French, German, Spanish, Portuguese and Italian
|
134 |
+
characters are handled properly in your downloaded file.
|
135 |
+
|
136 |
+
**Customization:** To change the app's background color to white or
|
137 |
+
black, click the three-dot menu on the right-hand side of your app, go to
|
138 |
+
Settings and then Choose app theme, colors and fonts.
|
139 |
+
|
140 |
+
**Technical issues:** If your connection times out, please refresh the
|
141 |
+
page or reopen the app's URL.
|
142 |
+
|
143 |
+
For any errors or inquiries, please contact us at [email protected]
|
144 |
+
''')
|
145 |
+
|
146 |
+
with st.sidebar:
|
147 |
+
container = st.container(border=True)
|
148 |
+
container.write("**Named Entity Recognition (NER)** is the task of "
|
149 |
+
"extracting and tagging entities in text data. Entities can be persons, "
|
150 |
+
"organizations, locations, countries, products, events etc.")
|
151 |
+
st.subheader("Related NER Web Apps", divider="orange")
|
152 |
+
st.link_button("Scandinavian JSON Entity Finder",
|
153 |
+
"https://nlpblogs.com/shop/named-entity-recognition-ner/scandinavian-json-entity-finder/",
|
154 |
+
type="primary")
|
155 |
+
|
156 |
+
# --- File Upload (PDF/DOCX) ---
|
157 |
+
uploaded_file = st.file_uploader("Upload your file. Accepted file formats include: .pdf, .docx", type=['pdf', 'docx'])
|
158 |
+
|
159 |
+
# Initialize text for the current run outside the if uploaded_file block
|
160 |
+
current_run_text = None
|
161 |
+
|
162 |
+
if uploaded_file is not None:
|
163 |
+
file_extension = uploaded_file.name.split('.')[-1].lower()
|
164 |
+
if file_extension == 'pdf':
|
165 |
+
try:
|
166 |
+
pdf_reader = PdfReader(uploaded_file)
|
167 |
+
text_content = ""
|
168 |
+
for page in pdf_reader.pages:
|
169 |
+
text_content += page.extract_text()
|
170 |
+
current_run_text = text_content
|
171 |
+
st.success("PDF file uploaded successfully. File content encrypted and secured. Due to security protocols, the file content is hidden.")
|
172 |
+
except Exception as e:
|
173 |
+
st.error(f"An error occurred while reading PDF: {e}")
|
174 |
+
current_run_text = None
|
175 |
+
elif file_extension == 'docx':
|
176 |
+
try:
|
177 |
+
doc = docx.Document(uploaded_file)
|
178 |
+
text_content = "\n".join([para.text for para in doc.paragraphs])
|
179 |
+
current_run_text = text_content
|
180 |
+
st.success("DOCX file uploaded successfully. File content encrypted and secured. Due to security protocols, the file content is hidden.")
|
181 |
+
except Exception as e:
|
182 |
+
st.error(f"An error occurred while reading DOCX: {e}")
|
183 |
+
current_run_text = None
|
184 |
+
else:
|
185 |
+
st.warning("Unsupported file type. Please upload a .pdf or .docx file.")
|
186 |
+
current_run_text = None
|
187 |
+
|
188 |
+
if current_run_text and current_run_text.strip():
|
189 |
+
# --- ENCRYPT THE EXTRACTED TEXT BEFORE STORING IN SESSION STATE ---
|
190 |
+
encrypted_text_bytes = encrypt_text(current_run_text)
|
191 |
+
st.session_state['encrypted_extracted_text'] = encrypted_text_bytes
|
192 |
+
|
193 |
+
st.divider()
|
194 |
+
else:
|
195 |
+
st.session_state['encrypted_extracted_text'] = None
|
196 |
+
st.error("Could not extract meaningful text from the uploaded file.")
|
197 |
+
|
198 |
+
# --- Results Button and Processing Logic ---
|
199 |
+
if st.button("Results"):
|
200 |
+
start_time_overall = time.time() # Start time for overall processing
|
201 |
+
if not comet_initialized:
|
202 |
+
st.warning("Comet ML not initialized. Check environment variables if you wish to log data.")
|
203 |
+
|
204 |
+
if st.session_state['file_upload_attempts'] >= max_attempts:
|
205 |
+
st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
|
206 |
+
st.stop()
|
207 |
+
|
208 |
+
# --- DECRYPT THE TEXT BEFORE PASSING TO NER MODEL ---
|
209 |
+
text_for_ner = None
|
210 |
+
if st.session_state['encrypted_extracted_text'] is not None:
|
211 |
+
text_for_ner = decrypt_text(st.session_state['encrypted_extracted_text'])
|
212 |
+
|
213 |
+
if text_for_ner is None or not text_for_ner.strip():
|
214 |
+
st.warning("No extractable text content available for analysis. Please upload a valid PDF or DOCX file.")
|
215 |
+
st.stop()
|
216 |
+
|
217 |
+
st.session_state['file_upload_attempts'] += 1
|
218 |
+
|
219 |
+
with st.spinner("Analyzing text...", show_time=True):
|
220 |
+
model = load_ner_model()
|
221 |
+
|
222 |
+
# Measure NER model processing time
|
223 |
+
start_time_ner = time.time()
|
224 |
+
# Use GLiNER's predict_entities method with the defined labels
|
225 |
+
text_entities = model.predict_entities(text_for_ner, GLINER_LABELS)
|
226 |
+
end_time_ner = time.time()
|
227 |
+
ner_processing_time = end_time_ner - start_time_ner
|
228 |
+
|
229 |
+
df = pd.DataFrame(text_entities)
|
230 |
+
|
231 |
+
# Rename 'label' to 'entity_group' and 'text' to 'word' for consistency
|
232 |
+
if 'label' in df.columns:
|
233 |
+
df.rename(columns={'label': 'entity_group', 'text': 'word'}, inplace=True)
|
234 |
+
else:
|
235 |
+
st.error("Unexpected GLiNER output structure. Please check the model's output format.")
|
236 |
+
st.stop()
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
# Replace empty strings with 'Unknown' and drop rows with NaN after cleaning
|
241 |
+
df = df.replace('', 'Unknown').dropna()
|
242 |
+
|
243 |
+
if df.empty:
|
244 |
+
st.warning("No entities were extracted from the uploaded text.")
|
245 |
+
st.stop()
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
if comet_initialized:
|
251 |
+
experiment = Experiment(
|
252 |
+
api_key=COMET_API_KEY,
|
253 |
+
workspace=COMET_WORKSPACE,
|
254 |
+
project_name=COMET_PROJECT_NAME,
|
255 |
+
)
|
256 |
+
experiment.log_parameter("input_text_length", len(text_for_ner))
|
257 |
+
experiment.log_table("predicted_entities", df)
|
258 |
+
experiment.log_metric("ner_processing_time_seconds", ner_processing_time)
|
259 |
+
|
260 |
+
|
261 |
+
# --- Display Results ---
|
262 |
+
st.subheader("Extracted Entities", divider="rainbow")
|
263 |
+
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
|
264 |
+
df_styled = df.style.set_properties(**properties)
|
265 |
+
st.dataframe(df_styled, use_container_width=True)
|
266 |
+
|
267 |
+
with st.expander("See Glossary of tags"):
|
268 |
+
st.write('''
|
269 |
+
'**word**': ['entity extracted from your text data']
|
270 |
+
|
271 |
+
'**score**': ['accuracy score; how accurately a tag has been assigned to
|
272 |
+
a given entity']
|
273 |
+
|
274 |
+
'**entity_group**': ['label (tag) assigned to a given extracted entity']
|
275 |
+
|
276 |
+
'**start**': ['index of the start of the corresponding entity']
|
277 |
+
|
278 |
+
'**end**': ['index of the end of the corresponding entity']
|
279 |
+
''')
|
280 |
+
|
281 |
+
|
282 |
+
st.subheader("Grouped entities", divider = "orange")
|
283 |
+
|
284 |
+
entity_items = [(label, label.replace('_', ' ').title()) for label in GLINER_LABELS]
|
285 |
+
tabs_per_row = 5
|
286 |
+
for i in range(0, len(entity_items), tabs_per_row):
|
287 |
+
current_row_entities = entity_items[i : i + tabs_per_row]
|
288 |
+
tab_titles = [item[1] for item in current_row_entities]
|
289 |
+
|
290 |
+
tabs = st.tabs(tab_titles)
|
291 |
+
for j, (entity_group_key, tab_title) in enumerate(current_row_entities):
|
292 |
+
with tabs[j]:
|
293 |
+
if entity_group_key in df["entity_group"].unique():
|
294 |
+
df_filtered = df[df["entity_group"] == entity_group_key]
|
295 |
+
st.dataframe(df_filtered, use_container_width=True)
|
296 |
+
else:
|
297 |
+
st.info(f"No '{tab_title}' entities found in the text.")
|
298 |
+
# Display an empty DataFrame for consistency if no entities are found
|
299 |
+
st.dataframe(pd.DataFrame({
|
300 |
+
'entity_group': [entity_group_key],
|
301 |
+
'score': [np.nan],
|
302 |
+
'word': [np.nan],
|
303 |
+
'start': [np.nan],
|
304 |
+
'end': [np.nan]
|
305 |
+
}), hide_index=True)
|
306 |
+
|
307 |
+
st.divider()
|
308 |
+
|
309 |
+
# --- Visualizations ---
|
310 |
+
st.subheader("Tree map", divider="orange")
|
311 |
+
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'entity_group', 'word'], # Changed path for better visual grouping
|
312 |
+
values='score', color='entity_group')
|
313 |
+
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
314 |
+
st.plotly_chart(fig_treemap)
|
315 |
+
if comet_initialized:
|
316 |
+
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
|
317 |
+
|
318 |
+
value_counts1 = df['entity_group'].value_counts()
|
319 |
+
final_df_counts = value_counts1.reset_index().rename(columns={"index": "entity_group", "count": "count"})
|
320 |
+
|
321 |
+
col1, col2 = st.columns(2)
|
322 |
+
with col1:
|
323 |
+
st.subheader("Pie Chart", divider="orange")
|
324 |
+
fig_pie = px.pie(final_df_counts, values='count', names='entity_group',
|
325 |
+
hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
|
326 |
+
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
327 |
+
st.plotly_chart(fig_pie)
|
328 |
+
if comet_initialized:
|
329 |
+
experiment.log_figure(figure=fig_pie, figure_name="label_pie_chart")
|
330 |
+
|
331 |
+
with col2:
|
332 |
+
st.subheader("Bar Chart", divider="orange")
|
333 |
+
fig_bar = px.bar(final_df_counts, x="count", y="entity_group", color="entity_group", text_auto=True,
|
334 |
+
title='Occurrences of predicted labels')
|
335 |
+
st.plotly_chart(fig_bar)
|
336 |
+
if comet_initialized:
|
337 |
+
experiment.log_figure(figure=fig_bar, figure_name="label_bar_chart")
|
338 |
+
|
339 |
+
# --- Downloadable Content ---
|
340 |
+
dfa = pd.DataFrame(
|
341 |
+
data={
|
342 |
+
'Column Name': ['word', 'entity_group','score', 'start', 'end'],
|
343 |
+
'Description': [
|
344 |
+
'entity extracted from your text data',
|
345 |
+
'label (tag) assigned to a given extracted entity',
|
346 |
+
'accuracy score; how accurately a tag has been assigned to a given entity',
|
347 |
+
'index of the start of the corresponding entity',
|
348 |
+
'index of the end of the corresponding entity',
|
349 |
+
]
|
350 |
+
}
|
351 |
+
)
|
352 |
+
|
353 |
+
buf = io.BytesIO()
|
354 |
+
with zipfile.ZipFile(buf, "w") as myzip:
|
355 |
+
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
356 |
+
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
357 |
+
|
358 |
+
with stylable_container(
|
359 |
+
key="download_button",
|
360 |
+
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
|
361 |
+
):
|
362 |
+
st.download_button(
|
363 |
+
label="Download zip file",
|
364 |
+
data=buf.getvalue(),
|
365 |
+
file_name="nlpblogs_ner_results.zip",
|
366 |
+
mime="application/zip",
|
367 |
+
)
|
368 |
+
if comet_initialized:
|
369 |
+
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")
|
370 |
+
|
371 |
+
st.divider()
|
372 |
+
if comet_initialized:
|
373 |
+
experiment.end()
|
374 |
+
|
375 |
+
end_time_overall = time.time() # End time for overall processing
|
376 |
+
elapsed_time_overall = end_time_overall - start_time_overall
|
377 |
+
st.info(f"Results processed in **{elapsed_time_overall:.2f} seconds**.")
|
378 |
+
|
379 |
+
st.write(f"Number of times you requested results: **{st.session_state['file_upload_attempts']}/{max_attempts}**")
|