AIEcosystem commited on
Commit
3e97259
·
verified ·
1 Parent(s): ebf2ca3

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +7 -7
src/streamlit_app.py CHANGED
@@ -76,7 +76,7 @@ st.markdown(
76
  # --- Page Configuration and UI Elements ---
77
  st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
78
 
79
- st.subheader("ProductTag", divider="red")
80
  st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
81
 
82
  expander = st.expander("**Important notes on the ProductTag**")
@@ -97,7 +97,7 @@ expander.write("""
97
  """)
98
 
99
  with st.sidebar:
100
- st.subheader("Build your own NER Web App in a minute without writing a single line of code.", divider="red")
101
  st.link_button("NER File Builder", "https://nlpblogs.com/shop/named-entity-recognition-ner/ner-file-builder/", type="primary")
102
 
103
  st.text("")
@@ -196,7 +196,7 @@ if st.button("Results"):
196
  experiment.log_parameter("input_text", text)
197
  experiment.log_table("predicted_entities", df)
198
 
199
- st.subheader("Extracted Entities", divider = "red")
200
  st.dataframe(df.style.set_properties(**{"border": "2px solid gray", "color": "blue", "font-size": "16px"}))
201
 
202
  with st.expander("See Glossary of tags"):
@@ -213,7 +213,7 @@ if st.button("Results"):
213
 
214
 
215
  # Tree map
216
- st.subheader("Tree map", divider = "red")
217
  fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
218
  fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
219
 
@@ -226,20 +226,20 @@ if st.button("Results"):
226
 
227
  col1, col2 = st.columns(2)
228
  with col1:
229
- st.subheader("Pie chart", divider = "red")
230
  fig_pie = px.pie(grouped_counts, values='count', names='category',
231
  hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
232
  fig_pie.update_traces(textposition='inside', textinfo='percent+label')
233
  st.plotly_chart(fig_pie)
234
 
235
  with col2:
236
- st.subheader("Bar chart", divider = "red")
237
  fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True,
238
  title='Occurrences of predicted categories')
239
  st.plotly_chart(fig_bar)
240
 
241
  # Most Frequent Entities
242
- st.subheader("Most Frequent Entities", divider="red")
243
  word_counts = df['text'].value_counts().reset_index()
244
  word_counts.columns = ['Entity', 'Count']
245
  repeating_entities = word_counts[word_counts['Count'] > 1]
 
76
  # --- Page Configuration and UI Elements ---
77
  st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
78
 
79
+ st.subheader("ProductTag", divider="gray")
80
  st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
81
 
82
  expander = st.expander("**Important notes on the ProductTag**")
 
97
  """)
98
 
99
  with st.sidebar:
100
+ st.subheader("Build your own NER Web App in a minute without writing a single line of code.", divider="gray")
101
  st.link_button("NER File Builder", "https://nlpblogs.com/shop/named-entity-recognition-ner/ner-file-builder/", type="primary")
102
 
103
  st.text("")
 
196
  experiment.log_parameter("input_text", text)
197
  experiment.log_table("predicted_entities", df)
198
 
199
+ st.subheader("Extracted Entities", divider = "gray")
200
  st.dataframe(df.style.set_properties(**{"border": "2px solid gray", "color": "blue", "font-size": "16px"}))
201
 
202
  with st.expander("See Glossary of tags"):
 
213
 
214
 
215
  # Tree map
216
+ st.subheader("Tree map", divider = "gray")
217
  fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
218
  fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
219
 
 
226
 
227
  col1, col2 = st.columns(2)
228
  with col1:
229
+ st.subheader("Pie chart", divider = "gray")
230
  fig_pie = px.pie(grouped_counts, values='count', names='category',
231
  hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
232
  fig_pie.update_traces(textposition='inside', textinfo='percent+label')
233
  st.plotly_chart(fig_pie)
234
 
235
  with col2:
236
+ st.subheader("Bar chart", divider = "gray")
237
  fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True,
238
  title='Occurrences of predicted categories')
239
  st.plotly_chart(fig_bar)
240
 
241
  # Most Frequent Entities
242
+ st.subheader("Most Frequent Entities", divider="gray")
243
  word_counts = df['text'].value_counts().reset_index()
244
  word_counts.columns = ['Entity', 'Count']
245
  repeating_entities = word_counts[word_counts['Count'] > 1]