uncover / src /streamlit_app.py
AIEcosystem's picture
Update src/streamlit_app.py
a4c6023 verified
import os
os.environ['HF_HOME'] = '/tmp'
import time
import streamlit as st
import pandas as pd
import io
import plotly.express as px
import zipfile
import json
from cryptography.fernet import Fernet
from streamlit_extras.stylable_container import stylable_container
from typing import Optional
from gliner import GLiNER
from comet_ml import Experiment
st.markdown(
"""
<style>
/* Main app background and text color */
.stApp {
background-color: #FFE5E5; /* A very light red */
color: #000000; /* Black for text */
}
/* Sidebar background color */
.css-1d36184 {
background-color: #FF6B6B; /* A soft red for the sidebar */
secondary-background-color: #FF6B6B;
}
/* Expander background color */
.streamlit-expanderContent {
background-color: #FFE5E5;
}
/* Expander header background color */
.streamlit-expanderHeader {
background-color: #FFE5E5;
}
/* Text Area background and text color */
.stTextArea textarea {
background-color: #FF9999; /* A light red */
color: #000000; /* Black for text */
}
/* Button background and text color */
.stButton > button {
background-color: #FF9999;
color: #000000;
}
/* Warning box background and text color */
.stAlert.st-warning {
background-color: #FF4D4D; /* A slightly darker red for warnings */
color: #000000;
}
/* Success box background and text color */
.stAlert.st-success {
background-color: #FF4D4D; /* A slightly darker red for success boxes */
color: #000000;
}
</style>
""",
unsafe_allow_html=True
)
# --- Page Configuration and UI Elements ---
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
st.subheader("Uncover", divider="red")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
expander = st.expander("**Important notes**")
expander.write("""**Named Entities:** This Uncover web app predicts twenty-eight (28) labels: "Names", "Aliases", "Identifiers", "Roles", "Government_agencies", "Businesses", "Criminal_groups", "Financial_institutions", "Addresses", "Geographic_coordinates", "Landmarks", "Jurisdictions", "Dates", "Timestamps", "Time_ranges", "Weapons", "Vehicles", "Financial_information", "Evidence", "Relationships", "Demographics", "Biometrics", "Psychological_states", "Software_types", "Hardware_components", "Equipment", "Events", "Activities"
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
**Usage Limits:** You can request results unlimited times for one (1) month.
**Supported Languages:** English
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
For any errors or inquiries, please contact us at [email protected]""")
with st.sidebar:
st.write("Use the following code to embed the Uncover web app on your website. Feel free to adjust the width and height values to fit your page.")
code = '''
<iframe
src="https://aiecosystem-uncover.hf.space"
frameborder="0"
width="850"
height="450"
></iframe>
'''
st.code(code, language="html")
st.text("")
st.text("")
st.divider()
st.subheader("πŸš€ Ready to build your own AI Web App?", divider="red")
st.link_button("AI Web App Builder", "https://nlpblogs.com/custom-web-app-development/", type="primary")
# --- Comet ML Setup ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
if not comet_initialized:
st.warning("Comet ML not initialized. Check environment variables.")
# --- Label Definitions ---
labels = [
"Names",
"Aliases",
"Identifiers",
"Roles",
"Government_agencies",
"Businesses",
"Criminal_groups",
"Financial_institutions",
"Addresses",
"Geographic_coordinates",
"Landmarks",
"Jurisdictions",
"Dates",
"Timestamps",
"Time_ranges",
"Weapons",
"Vehicles",
"Financial_information",
"Evidence",
"Relationships",
"Demographics",
"Biometrics",
"Psychological_states",
"Software_types",
"Hardware_components",
"Equipment",
"Events",
"Activities"
]
# Create a mapping dictionary for labels to categories
category_mapping = {
"People & Identities": ["Names", "Aliases", "Identifiers", "Roles", "Demographics", "Biometrics", "Psychological_states", "Relationships"],
"Organizations & Groups": ["Government_agencies", "Businesses", "Criminal_groups", "Financial_institutions"],
"Locations & Jurisdictions": ["Addresses", "Geographic_coordinates", "Landmarks", "Jurisdictions"],
"Times & Events" : ["Dates", "Timestamps", "Time_ranges", "Events", "Activities"],
"Objects & Information": ["Weapons", "Vehicles", "Equipment", "Financial_information", "Evidence", "Software_types", "Hardware_components"],
}
# --- Model Loading ---
@st.cache_resource
def load_ner_model():
"""Loads the GLiNER model and caches it."""
try:
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints= labels)
except Exception as e:
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
st.stop()
model = load_ner_model()
# Flatten the mapping to a single dictionary
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
# --- Text Input and Clear Button ---
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area')
def clear_text():
"""Clears the text area."""
st.session_state['my_text_area'] = ""
st.button("Clear text", on_click=clear_text)
# --- Results Section ---
if st.button("Results"):
start_time = time.time()
if not text.strip():
st.warning("Please enter some text to extract entities.")
else:
with st.spinner("Extracting entities...", show_time=True):
entities = model.predict_entities(text, labels)
df = pd.DataFrame(entities)
if not df.empty:
df['category'] = df['label'].map(reverse_category_mapping)
if comet_initialized:
experiment = Experiment(
api_key=COMET_API_KEY,
workspace=COMET_WORKSPACE,
project_name=COMET_PROJECT_NAME,
)
experiment.log_parameter("input_text", text)
experiment.log_table("predicted_entities", df)
st.subheader("Grouped Entities by Category", divider = "red")
# Create tabs for each category
category_names = sorted(list(category_mapping.keys()))
category_tabs = st.tabs(category_names)
for i, category_name in enumerate(category_names):
with category_tabs[i]:
df_category_filtered = df[df['category'] == category_name]
if not df_category_filtered.empty:
st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
else:
st.info(f"No entities found for the '{category_name}' category.")
with st.expander("See Glossary of tags"):
st.write('''
- **text**: ['entity extracted from your text data']
- **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
- **label**: ['label (tag) assigned to a given extracted entity']
- **start**: ['index of the start of the corresponding entity']
- **end**: ['index of the end of the corresponding entity']
''')
st.divider()
# Tree map
st.subheader("Tree map", divider = "red")
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#FFE5E5', plot_bgcolor='#FFE5E5')
st.plotly_chart(fig_treemap)
# Pie and Bar charts
grouped_counts = df['category'].value_counts().reset_index()
grouped_counts.columns = ['category', 'count']
col1, col2 = st.columns(2)
with col1:
st.subheader("Pie chart", divider = "red")
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
fig_pie.update_layout(
paper_bgcolor='#FFE5E5',
plot_bgcolor='#FFE5E5'
)
st.plotly_chart(fig_pie)
with col2:
st.subheader("Bar chart", divider = "red")
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
fig_bar.update_layout(
paper_bgcolor='#FFE5E5',
plot_bgcolor='#FFE5E5'
)
st.plotly_chart(fig_bar)
# Most Frequent Entities
st.subheader("Most Frequent Entities", divider="red")
word_counts = df['text'].value_counts().reset_index()
word_counts.columns = ['Entity', 'Count']
repeating_entities = word_counts[word_counts['Count'] > 1]
if not repeating_entities.empty:
st.dataframe(repeating_entities, use_container_width=True)
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'},
paper_bgcolor='#FFE5E5',
plot_bgcolor='#FFE5E5')
st.plotly_chart(fig_repeating_bar)
else:
st.warning("No entities were found that occur more than once.")
# Download Section
st.divider()
dfa = pd.DataFrame(
data={
'Column Name': ['text', 'label', 'score', 'start', 'end'],
'Description': [
'entity extracted from your text data',
'label (tag) assigned to a given extracted entity',
'accuracy score; how accurately a tag has been assigned to a given entity',
'index of the start of the corresponding entity',
'index of the end of the corresponding entity',
]
}
)
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
):
st.download_button(
label="Download results and glossary (zip)",
data=buf.getvalue(),
file_name="nlpblogs_results.zip",
mime="application/zip",
)
if comet_initialized:
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
experiment.end()
else: # If df is empty
st.warning("No entities were found in the provided text.")
end_time = time.time()
elapsed_time = end_time - start_time
st.text("")
st.text("")
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")