File size: 7,176 Bytes
a6350d7
 
 
0eb933f
4e4fe07
 
a6350d7
0eb933f
5396a98
 
 
 
 
76edd3a
 
 
5396a98
7af8af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76edd3a
5396a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76edd3a
 
 
f0ab7ff
76edd3a
5396a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eb933f
5396a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eb933f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import datetime

import gradio as gr
from huggingface_hub import HfApi 
from huggingface_hub.hf_api import ModelInfo
from enum import Enum


OWNER = "EnergyStarAI"
COMPUTE_SPACE = f"{OWNER}/launch-computation-example"
REQUESTS_DATASET_PATH = f"{OWNER}/requests_debug"

TOKEN = os.environ.get("DEBUG")
API = HfApi(token=TOKEN)


## All the model information that we might need
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = "" # emoji

class ModelType(Enum):
    PT = ModelDetails(name="pretrained", symbol="🟒")
    FT = ModelDetails(name="fine-tuned", symbol="πŸ”Ά")
    IFT = ModelDetails(name="instruction-tuned", symbol="β­•")
    RL = ModelDetails(name="RL-tuned", symbol="🟦")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "fine-tuned" in type or "πŸ”Ά" in type:
            return ModelType.FT
        if "pretrained" in type or "🟒" in type:
            return ModelType.PT
        if "RL-tuned" in type or "🟦" in type:
            return ModelType.RL
        if "instruction-tuned" in type or "β­•" in type:
            return ModelType.IFT
        return ModelType.Unknown

def update(name):
    API.restart_space(COMPUTE_SPACE)  
    return f"Okay! {COMPUTE_SPACE} should be running now!"


def get_model_size(model_info: ModelInfo, precision: str):
    """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
    try:
        model_size = round(model_info.safetensors["total"] / 1e9, 3)
    except (AttributeError, TypeError):
        return 0  # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
    
    size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
    model_size = size_factor * model_size
    return model_size


def add_new_eval(
    repo_id: str,
    base_model: str,
    revision: str,
    precision: str,
    weight_type: str,
    model_type: str,
):
    model_owner = repo_id.split("/")[0]
    model_name = repo_id.split("/")[1]
    precision = precision.split(" ")[0]

    out_dir = f"{EVAL_REQUESTS_PATH}/{model_owner}"
    print("Making Dataset directory to output results at %s" % out_dir)
    os.makedirs(out_dir, exist_ok=True)
    out_path = f"{EVAL_REQUESTS_PATH}/{model_owner}/{model_name}_eval_request_{precision}_{weight_type}.json"
    
    current_time = datetime.now(datetime.timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")

    #if model_type is None or model_type == "":
    #    return styled_error("Please select a model type.")

    # Does the model actually exist?
    #if revision == "":
    revision = "main"

    # Is the model on the hub?
    #if weight_type in ["Delta", "Adapter"]:
    #    base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
    #    if not base_model_on_hub:
    #        return styled_error(f'Base model "{base_model}" {error}')

    #if not weight_type == "Adapter":
    #    model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
    #    if not model_on_hub:
    #        return styled_error(f'Model "{model}" {error}')

    # Is the model info correctly filled?
    try:
        model_info = API.model_info(repo_id=repo_id, revision=revision)
    except Exception:
        print("Could not find information for model %s at revision %s" % (model, revision))
        return
    #    return styled_error("Could not get your model information. Please fill it up properly.")

    model_size = get_model_size(model_info=model_info, precision=precision)

    # Were the model card and license filled?
    #try:
    #    license = model_info.cardData["license"]
    #except Exception:
    #    return styled_error("Please select a license for your model")

    #modelcard_OK, error_msg = check_model_card(model)
    #if not modelcard_OK:
    #    return styled_error(error_msg)

    # Seems good, creating the eval
    print("Adding request")

    request_entry = {
        "model": repo_id,
        "base_model": base_model,
        "revision": revision,
        "precision": precision,
        "weight_type": weight_type,
        "status": "PENDING",
        "submitted_time": current_time,
        "model_type": model_type,
        "likes": model_info.likes,
        "params": model_size}
        #"license": license,
        #"private": False,
    #}

    # Check for duplicate submission
    #if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
    #    return styled_warning("This model has been already submitted.")

    print("Writing out request file to %s" % out_path)
    with open(out_path, "w") as f:
        f.write(json.dumps(eval_entry))


        

with gr.Blocks() as demo:
    gr.Markdown("This is a super basic example 'frontend'. Start typing below and then click **Run** to launch the job.")
    gr.Markdown("The job will be launched at [EnergyStarAI/launch-computation-example](https://huggingface.co/spaces/EnergyStarAI/launch-computation-example)")
    with gr.Row():
            gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Run Analysis")
            submission_result = gr.Markdown()
            submit_button.click(
                fn=add_new_eval,
                inputs=[
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                ],
                outputs=submission_result,
            )
    
demo.launch()