Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| class Discriminator2DFactory(nn.Module): | |
| def __init__(self, time_length, freq_length=80, kernel=(3, 3), c_in=1, hidden_size=128, | |
| norm_type='bn', reduction='sum'): | |
| super(Discriminator2DFactory, self).__init__() | |
| padding = (kernel[0] // 2, kernel[1] // 2) | |
| def discriminator_block(in_filters, out_filters, first=False): | |
| """ | |
| Input: (B, in, 2H, 2W) | |
| Output:(B, out, H, W) | |
| """ | |
| conv = nn.Conv2d(in_filters, out_filters, kernel, (2, 2), padding) | |
| if norm_type == 'sn': | |
| conv = nn.utils.spectral_norm(conv) | |
| block = [ | |
| conv, # padding = kernel//2 | |
| nn.LeakyReLU(0.2, inplace=True), | |
| nn.Dropout2d(0.25) | |
| ] | |
| if norm_type == 'bn' and not first: | |
| block.append(nn.BatchNorm2d(out_filters, 0.8)) | |
| if norm_type == 'in' and not first: | |
| block.append(nn.InstanceNorm2d(out_filters, affine=True)) | |
| block = nn.Sequential(*block) | |
| return block | |
| self.model = nn.ModuleList([ | |
| discriminator_block(c_in, hidden_size, first=True), | |
| discriminator_block(hidden_size, hidden_size), | |
| discriminator_block(hidden_size, hidden_size), | |
| ]) | |
| self.reduction = reduction | |
| ds_size = (time_length // 2 ** 3, (freq_length + 7) // 2 ** 3) | |
| if reduction != 'none': | |
| # The height and width of downsampled image | |
| self.adv_layer = nn.Linear(hidden_size * ds_size[0] * ds_size[1], 1) | |
| else: | |
| self.adv_layer = nn.Linear(hidden_size * ds_size[1], 1) | |
| def forward(self, x): | |
| """ | |
| :param x: [B, C, T, n_bins] | |
| :return: validity: [B, 1], h: List of hiddens | |
| """ | |
| h = [] | |
| for l in self.model: | |
| x = l(x) | |
| h.append(x) | |
| if self.reduction != 'none': | |
| x = x.view(x.shape[0], -1) | |
| validity = self.adv_layer(x) # [B, 1] | |
| else: | |
| B, _, T_, _ = x.shape | |
| x = x.transpose(1, 2).reshape(B, T_, -1) | |
| validity = self.adv_layer(x)[:, :, 0] # [B, T] | |
| return validity, h | |
| class MultiWindowDiscriminator(nn.Module): | |
| def __init__(self, time_lengths, cond_size=0, freq_length=80, kernel=(3, 3), | |
| c_in=1, hidden_size=128, norm_type='bn', reduction='sum'): | |
| super(MultiWindowDiscriminator, self).__init__() | |
| self.win_lengths = time_lengths | |
| self.reduction = reduction | |
| self.conv_layers = nn.ModuleList() | |
| if cond_size > 0: | |
| self.cond_proj_layers = nn.ModuleList() | |
| self.mel_proj_layers = nn.ModuleList() | |
| for time_length in time_lengths: | |
| conv_layer = [ | |
| Discriminator2DFactory( | |
| time_length, freq_length, kernel, c_in=c_in, hidden_size=hidden_size, | |
| norm_type=norm_type, reduction=reduction) | |
| ] | |
| self.conv_layers += conv_layer | |
| if cond_size > 0: | |
| self.cond_proj_layers.append(nn.Linear(cond_size, freq_length)) | |
| self.mel_proj_layers.append(nn.Linear(freq_length, freq_length)) | |
| def forward(self, x, x_len, cond=None, start_frames_wins=None): | |
| ''' | |
| Args: | |
| x (tensor): input mel, (B, c_in, T, n_bins). | |
| x_length (tensor): len of per mel. (B,). | |
| Returns: | |
| tensor : (B). | |
| ''' | |
| validity = [] | |
| if start_frames_wins is None: | |
| start_frames_wins = [None] * len(self.conv_layers) | |
| h = [] | |
| for i, start_frames in zip(range(len(self.conv_layers)), start_frames_wins): | |
| x_clip, c_clip, start_frames = self.clip( | |
| x, cond, x_len, self.win_lengths[i], start_frames) # (B, win_length, C) | |
| start_frames_wins[i] = start_frames | |
| if x_clip is None: | |
| continue | |
| if cond is not None: | |
| x_clip = self.mel_proj_layers[i](x_clip) # (B, 1, win_length, C) | |
| c_clip = self.cond_proj_layers[i](c_clip)[:, None] # (B, 1, win_length, C) | |
| x_clip = x_clip + c_clip | |
| x_clip, h_ = self.conv_layers[i](x_clip) | |
| h += h_ | |
| validity.append(x_clip) | |
| if len(validity) != len(self.conv_layers): | |
| return None, start_frames_wins, h | |
| if self.reduction == 'sum': | |
| validity = sum(validity) # [B] | |
| elif self.reduction == 'stack': | |
| validity = torch.stack(validity, -1) # [B, W_L] | |
| elif self.reduction == 'none': | |
| validity = torch.cat(validity, -1) # [B, W_sum] | |
| return validity, start_frames_wins, h | |
| def clip(self, x, cond, x_len, win_length, start_frames=None): | |
| '''Ramdom clip x to win_length. | |
| Args: | |
| x (tensor) : (B, c_in, T, n_bins). | |
| cond (tensor) : (B, T, H). | |
| x_len (tensor) : (B,). | |
| win_length (int): target clip length | |
| Returns: | |
| (tensor) : (B, c_in, win_length, n_bins). | |
| ''' | |
| T_start = 0 | |
| T_end = x_len.max() - win_length | |
| if T_end < 0: | |
| return None, None, start_frames | |
| T_end = T_end.item() | |
| if start_frames is None: | |
| start_frame = np.random.randint(low=T_start, high=T_end + 1) | |
| start_frames = [start_frame] * x.size(0) | |
| else: | |
| start_frame = start_frames[0] | |
| x_batch = x[:, :, start_frame: start_frame + win_length] | |
| c_batch = cond[:, start_frame: start_frame + win_length] if cond is not None else None | |
| return x_batch, c_batch, start_frames | |
| class Discriminator(nn.Module): | |
| def __init__(self, time_lengths=[32, 64, 128], freq_length=80, cond_size=0, kernel=(3, 3), c_in=1, | |
| hidden_size=128, norm_type='bn', reduction='sum', uncond_disc=True): | |
| super(Discriminator, self).__init__() | |
| self.time_lengths = time_lengths | |
| self.cond_size = cond_size | |
| self.reduction = reduction | |
| self.uncond_disc = uncond_disc | |
| if uncond_disc: | |
| self.discriminator = MultiWindowDiscriminator( | |
| freq_length=freq_length, | |
| time_lengths=time_lengths, | |
| kernel=kernel, | |
| c_in=c_in, hidden_size=hidden_size, norm_type=norm_type, | |
| reduction=reduction | |
| ) | |
| if cond_size > 0: | |
| self.cond_disc = MultiWindowDiscriminator( | |
| freq_length=freq_length, | |
| time_lengths=time_lengths, | |
| cond_size=cond_size, | |
| kernel=kernel, | |
| c_in=c_in, hidden_size=hidden_size, norm_type=norm_type, | |
| reduction=reduction | |
| ) | |
| def forward(self, x, cond=None, start_frames_wins=None): | |
| """ | |
| :param x: [B, T, 80] | |
| :param cond: [B, T, cond_size] | |
| :param return_y_only: | |
| :return: | |
| """ | |
| if len(x.shape) == 3: | |
| x = x[:, None, :, :] | |
| x_len = x.sum([1, -1]).ne(0).int().sum([-1]) | |
| ret = {'y_c': None, 'y': None} | |
| if self.uncond_disc: | |
| ret['y'], start_frames_wins, ret['h'] = self.discriminator( | |
| x, x_len, start_frames_wins=start_frames_wins) | |
| if self.cond_size > 0 and cond is not None: | |
| ret['y_c'], start_frames_wins, ret['h_c'] = self.cond_disc( | |
| x, x_len, cond, start_frames_wins=start_frames_wins) | |
| ret['start_frames_wins'] = start_frames_wins | |
| return ret |