Spaces:
Runtime error
Runtime error
Upload 5 files
Browse files- .gitignore +4 -0
- README.md +4 -4
- app.py +170 -0
- requirements.txt +20 -0
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
./useful_ckpts
|
| 2 |
+
*.pyc
|
| 3 |
+
__pycache__
|
| 4 |
+
./not_finished
|
README.md
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
---
|
| 2 |
title: Make An Audio Inpaint
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 1 |
---
|
| 2 |
title: Make An Audio Inpaint
|
| 3 |
+
emoji: 🔥
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.17.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
app.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import matplotlib
|
| 6 |
+
from omegaconf import OmegaConf
|
| 7 |
+
from einops import repeat
|
| 8 |
+
import librosa
|
| 9 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
| 10 |
+
from vocoder.bigvgan.models import VocoderBigVGAN
|
| 11 |
+
from ldm.util import instantiate_from_config
|
| 12 |
+
from ldm.data.extract_mel_spectrogram import TRANSFORMS_16000
|
| 13 |
+
|
| 14 |
+
SAMPLE_RATE = 16000
|
| 15 |
+
cmap_transform = matplotlib.cm.viridis
|
| 16 |
+
torch.set_grad_enabled(False)
|
| 17 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 18 |
+
|
| 19 |
+
def initialize_model(config, ckpt):
|
| 20 |
+
config = OmegaConf.load(config)
|
| 21 |
+
model = instantiate_from_config(config.model)
|
| 22 |
+
model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False)
|
| 23 |
+
|
| 24 |
+
model = model.to(device)
|
| 25 |
+
print(model.device,device,model.cond_stage_model.device)
|
| 26 |
+
sampler = DDIMSampler(model)
|
| 27 |
+
return sampler
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def make_batch_sd(
|
| 31 |
+
mel,
|
| 32 |
+
mask,
|
| 33 |
+
device,
|
| 34 |
+
num_samples=1):
|
| 35 |
+
|
| 36 |
+
mel = torch.from_numpy(mel)[None,None,...].to(dtype=torch.float32)
|
| 37 |
+
mask = torch.from_numpy(mask)[None,None,...].to(dtype=torch.float32)
|
| 38 |
+
masked_mel = (1 - mask) * mel
|
| 39 |
+
|
| 40 |
+
mel = mel * 2 - 1
|
| 41 |
+
mask = mask * 2 - 1
|
| 42 |
+
masked_mel = masked_mel * 2 -1
|
| 43 |
+
|
| 44 |
+
batch = {
|
| 45 |
+
"mel": repeat(mel.to(device=device), "1 ... -> n ...", n=num_samples),
|
| 46 |
+
"mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples),
|
| 47 |
+
"masked_mel": repeat(masked_mel.to(device=device), "1 ... -> n ...", n=num_samples),
|
| 48 |
+
}
|
| 49 |
+
return batch
|
| 50 |
+
|
| 51 |
+
def gen_mel(input_audio):
|
| 52 |
+
sr,ori_wav = input_audio
|
| 53 |
+
print(sr,ori_wav.shape,ori_wav)
|
| 54 |
+
|
| 55 |
+
ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0 # order='C'是以C语言格式存储,不用管
|
| 56 |
+
if len(ori_wav.shape)==2:# stereo
|
| 57 |
+
ori_wav = librosa.to_mono(ori_wav.T)# gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len)
|
| 58 |
+
print(sr,ori_wav.shape,ori_wav)
|
| 59 |
+
ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE)
|
| 60 |
+
|
| 61 |
+
mel_len,hop_size = 848,256
|
| 62 |
+
input_len = mel_len * hop_size
|
| 63 |
+
if len(ori_wav) < input_len:
|
| 64 |
+
input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0)
|
| 65 |
+
else:
|
| 66 |
+
input_wav = ori_wav[:input_len]
|
| 67 |
+
|
| 68 |
+
mel = TRANSFORMS_16000(input_wav)
|
| 69 |
+
return mel
|
| 70 |
+
|
| 71 |
+
def show_mel_fn(input_audio):
|
| 72 |
+
crop_len = 500 # the full mel cannot be showed due to gradio's Image bug when using tool='sketch'
|
| 73 |
+
crop_mel = gen_mel(input_audio)[:,:crop_len]
|
| 74 |
+
color_mel = cmap_transform(crop_mel)
|
| 75 |
+
return Image.fromarray((color_mel*255).astype(np.uint8))
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def inpaint(sampler, batch, seed, ddim_steps, num_samples=1, W=512, H=512):
|
| 79 |
+
model = sampler.model
|
| 80 |
+
|
| 81 |
+
prng = np.random.RandomState(seed)
|
| 82 |
+
start_code = prng.randn(num_samples, model.first_stage_model.embed_dim, H // 8, W // 8)
|
| 83 |
+
start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)
|
| 84 |
+
|
| 85 |
+
c = model.get_first_stage_encoding(model.encode_first_stage(batch["masked_mel"]))
|
| 86 |
+
cc = torch.nn.functional.interpolate(batch["mask"],
|
| 87 |
+
size=c.shape[-2:])
|
| 88 |
+
c = torch.cat((c, cc), dim=1) # (b,c+1,h,w) 1 is mask
|
| 89 |
+
|
| 90 |
+
shape = (c.shape[1]-1,)+c.shape[2:]
|
| 91 |
+
samples_ddim, _ = sampler.sample(S=ddim_steps,
|
| 92 |
+
conditioning=c,
|
| 93 |
+
batch_size=c.shape[0],
|
| 94 |
+
shape=shape,
|
| 95 |
+
verbose=False)
|
| 96 |
+
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
mask = batch["mask"]# [-1,1]
|
| 100 |
+
mel = torch.clamp((batch["mel"]+1.0)/2.0,min=0.0, max=1.0)
|
| 101 |
+
mask = torch.clamp((batch["mask"]+1.0)/2.0,min=0.0, max=1.0)
|
| 102 |
+
predicted_mel = torch.clamp((x_samples_ddim+1.0)/2.0,min=0.0, max=1.0)
|
| 103 |
+
inpainted = (1-mask)*mel+mask*predicted_mel
|
| 104 |
+
inpainted = inpainted.cpu().numpy().squeeze()
|
| 105 |
+
inapint_wav = vocoder.vocode(inpainted)
|
| 106 |
+
|
| 107 |
+
return inpainted,inapint_wav
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def predict(input_audio,mel_and_mask,ddim_steps,seed):
|
| 111 |
+
show_mel = np.array(mel_and_mask['image'].convert("L"))/255 # 由于展示的mel只展示了一部分,所以需要重新从音频生成mel
|
| 112 |
+
mask = np.array(mel_and_mask["mask"].convert("L"))/255
|
| 113 |
+
|
| 114 |
+
mel_bins,mel_len = 80,848
|
| 115 |
+
|
| 116 |
+
input_mel = gen_mel(input_audio)[:,:mel_len]# 由于展示的mel只展示了一部分,所以需要重新从音频生成mel
|
| 117 |
+
mask = np.pad(mask,((0,0),(0,mel_len-mask.shape[1])),mode='constant',constant_values=0)# 将mask填充到原来的mel的大小
|
| 118 |
+
print(mask.shape,input_mel.shape)
|
| 119 |
+
with torch.no_grad():
|
| 120 |
+
batch = make_batch_sd(input_mel,mask,device,num_samples=1)
|
| 121 |
+
inpainted,gen_wav = inpaint(
|
| 122 |
+
sampler=sampler,
|
| 123 |
+
batch=batch,
|
| 124 |
+
seed=seed,
|
| 125 |
+
ddim_steps=ddim_steps,
|
| 126 |
+
num_samples=1,
|
| 127 |
+
H=mel_bins, W=mel_len
|
| 128 |
+
)
|
| 129 |
+
inpainted = inpainted[:,:show_mel.shape[1]]
|
| 130 |
+
color_mel = cmap_transform(inpainted)
|
| 131 |
+
input_len = int(input_audio[1].shape[0] * SAMPLE_RATE / input_audio[0])
|
| 132 |
+
gen_wav = (gen_wav * 32768).astype(np.int16)[:input_len]
|
| 133 |
+
return Image.fromarray((color_mel*255).astype(np.uint8)),(SAMPLE_RATE,gen_wav)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
sampler = initialize_model('./configs/inpaint/txt2audio_args.yaml', './useful_ckpts/inpaint7_epoch00047.ckpt')
|
| 137 |
+
vocoder = VocoderBigVGAN('./vocoder/logs/bigv16k53w',device=device)
|
| 138 |
+
|
| 139 |
+
block = gr.Blocks().queue()
|
| 140 |
+
with block:
|
| 141 |
+
with gr.Row():
|
| 142 |
+
gr.Markdown("## Make-An-Audio Inpainting")
|
| 143 |
+
|
| 144 |
+
with gr.Row():
|
| 145 |
+
with gr.Column():
|
| 146 |
+
input_audio = gr.inputs.Audio()
|
| 147 |
+
|
| 148 |
+
show_button = gr.Button("Show Mel")
|
| 149 |
+
|
| 150 |
+
run_button = gr.Button("Predict Masked Place")
|
| 151 |
+
with gr.Accordion("Advanced options", open=False):
|
| 152 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1,
|
| 153 |
+
maximum=150, value=100, step=1)
|
| 154 |
+
seed = gr.Slider(
|
| 155 |
+
label="Seed",
|
| 156 |
+
minimum=0,
|
| 157 |
+
maximum=2147483647,
|
| 158 |
+
step=1,
|
| 159 |
+
randomize=True,
|
| 160 |
+
)
|
| 161 |
+
with gr.Column():
|
| 162 |
+
show_inpainted = gr.Image(type="pil").style(width=848,height=80)
|
| 163 |
+
outaudio = gr.Audio()
|
| 164 |
+
show_mel = gr.Image(type="pil",tool='sketch')#.style(width=848,height=80) # 加上这个没办法展示完全图片
|
| 165 |
+
show_button.click(fn=show_mel_fn, inputs=[input_audio], outputs=show_mel)
|
| 166 |
+
|
| 167 |
+
run_button.click(fn=predict, inputs=[input_audio,show_mel,ddim_steps,seed], outputs=[show_inpainted,outaudio])
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
block.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 2 |
+
torch
|
| 3 |
+
torch-fidelity==0.3.0
|
| 4 |
+
scipy
|
| 5 |
+
matplotlib
|
| 6 |
+
torchaudio>=0.13.0
|
| 7 |
+
torchvision>=0.14.0
|
| 8 |
+
tqdm
|
| 9 |
+
omegaconf
|
| 10 |
+
einops
|
| 11 |
+
numpy<=1.23.5
|
| 12 |
+
soundfile
|
| 13 |
+
librosa
|
| 14 |
+
pandas
|
| 15 |
+
# transformers
|
| 16 |
+
torchlibrosa
|
| 17 |
+
transformers
|
| 18 |
+
ftfy
|
| 19 |
+
pytorch-lightning==1.5.9
|
| 20 |
+
# -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|