File size: 23,937 Bytes
46282cc
e992a5c
 
 
ae2dd52
e992a5c
 
46282cc
dcd537f
e992a5c
 
ae2dd52
 
bd3c47a
9f0f2b7
bd3c47a
 
ae2dd52
5881559
ae2dd52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5881559
 
ae2dd52
5881559
 
 
ae2dd52
5881559
 
 
 
 
 
 
 
ae2dd52
5881559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae2dd52
 
5881559
 
9f0f2b7
ae2dd52
5881559
 
 
 
9f0f2b7
5881559
 
9f0f2b7
5881559
ae2dd52
5a70a99
ae2dd52
5881559
 
a6f9d31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae2dd52
a6f9d31
5881559
 
a6f9d31
ae2dd52
5881559
ae2dd52
5881559
 
 
 
ae2dd52
5881559
ae2dd52
 
9f0f2b7
5881559
ae2dd52
 
 
 
 
bd3c47a
ae2dd52
9f0f2b7
ae2dd52
 
 
 
 
e992a5c
9f0f2b7
ae2dd52
e992a5c
 
 
 
9f0f2b7
ae2dd52
 
 
9f0f2b7
ae2dd52
9f0f2b7
ae2dd52
 
 
 
9f0f2b7
5881559
d1ec131
ae2dd52
 
 
9f0f2b7
ae2dd52
 
bd3c47a
ae2dd52
5881559
d1ec131
ae2dd52
 
 
 
9f0f2b7
bd3c47a
9f0f2b7
 
bd758e2
ae2dd52
 
9f0f2b7
 
7771cfc
ae2dd52
 
bd3c47a
ae2dd52
5881559
 
ae2dd52
 
7771cfc
9f0f2b7
e992a5c
 
 
ae2dd52
e992a5c
 
9f0f2b7
ae2dd52
a10d515
ae2dd52
 
9f0f2b7
ae2dd52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5881559
 
ae2dd52
5881559
 
 
 
 
ae2dd52
5881559
9f0f2b7
ae2dd52
 
bd3c47a
 
 
 
 
 
 
 
 
 
5881559
bd3c47a
5e99db0
bd3c47a
5881559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8867d8b
5881559
bd3c47a
ae2dd52
5881559
ae2dd52
5881559
 
 
 
 
e0ca52a
9f0f2b7
ae2dd52
e992a5c
 
 
 
 
 
ae2dd52
e992a5c
 
9f0f2b7
e992a5c
 
ae2dd52
9f0f2b7
e992a5c
 
 
 
 
ae2dd52
e992a5c
 
 
 
9f0f2b7
e992a5c
 
 
 
 
 
 
 
 
 
9f0f2b7
e992a5c
 
 
 
 
 
 
 
 
 
 
9f0f2b7
e992a5c
 
 
 
 
9f0f2b7
e992a5c
 
 
 
 
9f0f2b7
e992a5c
 
 
 
 
9f0f2b7
e992a5c
 
5881559
 
 
 
 
 
 
 
 
 
9f0f2b7
e992a5c
 
 
9f0f2b7
e992a5c
 
 
 
 
9f0f2b7
e992a5c
 
 
 
 
 
 
9f0f2b7
5881559
e992a5c
 
9f0f2b7
5881559
 
 
 
9f0f2b7
5881559
e992a5c
9f0f2b7
e992a5c
 
9f0f2b7
e992a5c
 
9f0f2b7
e992a5c
 
 
 
 
ae2dd52
e992a5c
5881559
9f0f2b7
ae2dd52
5881559
 
 
 
ae2dd52
 
9f0f2b7
ae2dd52
 
 
9f0f2b7
ae2dd52
 
9f0f2b7
5881559
 
 
 
 
 
e992a5c
 
 
 
ae2dd52
e992a5c
5881559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e992a5c
9f0f2b7
ae2dd52
 
e992a5c
 
 
 
 
 
ae2dd52
e992a5c
ae2dd52
e992a5c
 
 
 
 
ae2dd52
e992a5c
ae2dd52
e992a5c
 
ae2dd52
e992a5c
 
 
 
 
 
 
9f0f2b7
e992a5c
ae2dd52
5a70a99
e992a5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f0f2b7
e992a5c
9f0f2b7
 
e992a5c
 
 
 
9f0f2b7
ae2dd52
e992a5c
9f0f2b7
e992a5c
5a70a99
 
 
 
 
 
 
 
e992a5c
 
 
 
 
 
 
 
 
5a70a99
 
 
 
 
 
 
e992a5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f0f2b7
e992a5c
 
 
 
 
9f0f2b7
e992a5c
 
 
 
 
9f0f2b7
e992a5c
 
 
 
 
9f0f2b7
ae2dd52
 
 
 
 
7771cfc
e992a5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae2dd52
 
 
 
 
 
e992a5c
 
46282cc
 
 
 
 
 
 
 
 
 
e992a5c
46282cc
ae2dd52
 
9f0f2b7
ae2dd52
 
 
 
 
9f0f2b7
ae2dd52
b95dd01
62b8fab
ae2dd52
9f0f2b7
ae2dd52
 
5881559
9f0f2b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
import argparse
import datetime
import hashlib
import json
import logging
import os
import sys
import time
import spaces
import gradio as gr
import torch
from PIL import Image
from transformers import (
    AutoProcessor,
    AutoTokenizer,
    Qwen2_5_VLForConditionalGeneration,
    LlavaOnevisionForConditionalGeneration
)
from qwen_vl_utils import process_vision_info
from taxonomy import policy_v1

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler("gradio_web_server.log"),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger("gradio_web_server")

# Constants
LOGDIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "logs")
os.makedirs(os.path.join(LOGDIR, "serve_images"), exist_ok=True)

default_taxonomy = policy_v1


class SimpleConversation:
    def __init__(self):
        self.current_prompt = ""
        self.current_image = None
        self.current_response = None
        self.skip_next = False
        self.messages = []  # Add messages list to store conversation history

    def set_prompt(self, prompt, image=None):
        self.current_prompt = prompt
        self.current_image = image
        self.current_response = None
        # Update messages when setting a new prompt
        self.messages = [[prompt, None]]

    def set_response(self, response):
        self.current_response = response
        # Update the last message's response when setting a response
        if self.messages and len(self.messages) > 0:
            self.messages[-1][-1] = response

    def get_prompt(self):
        if isinstance(self.current_prompt, tuple):
            return self.current_prompt[0]
        return self.current_prompt

    def get_image(self, return_pil=False):
        if self.current_image:
            return [self.current_image]
        if isinstance(self.current_prompt, tuple) and len(self.current_prompt) > 1:
            if isinstance(self.current_prompt[1], Image.Image):
                return [self.current_prompt[1]]
        return None

    def to_gradio_chatbot(self):
        if not self.messages:
            return []

        ret = []
        for msg in self.messages:
            prompt = msg[0]
            if isinstance(prompt, tuple) and len(prompt) > 0:
                prompt = prompt[0]

            if prompt and isinstance(prompt, str) and "<image>" in prompt:
                prompt = prompt.replace("<image>", "")

            ret.append([prompt, msg[1]])
        return ret

    def dict(self):
        # Simplified serialization for logging
        image_info = "[WITH_IMAGE]" if self.current_image is not None else "[NO_IMAGE]"

        # Handle prompt which might be a tuple containing an image
        prompt = self.get_prompt()
        if isinstance(prompt, tuple):
            prompt = prompt[0]  # Just take the text part

        # Create JSON-safe message representations
        safe_messages = []
        for msg in self.messages:
            msg_prompt = msg[0]
            # Handle tuple prompts that contain images
            if isinstance(msg_prompt, tuple) and len(msg_prompt) > 0:
                msg_prompt = msg_prompt[0]  # Take just the text part

            # Add the message with safe values
            safe_messages.append([msg_prompt, "[RESPONSE]" if msg[1] else None])

        return {
            "prompt": prompt,
            "image": image_info,
            "response": self.current_response,
            "messages": safe_messages
        }

    def copy(self):
        new_conv = SimpleConversation()
        new_conv.current_prompt = self.current_prompt
        new_conv.current_image = self.current_image
        new_conv.current_response = self.current_response
        new_conv.skip_next = self.skip_next
        new_conv.messages = self.messages.copy() if self.messages else []
        return new_conv


default_conversation = SimpleConversation()

# Model and processor storage
tokenizer = None
model = None
processor = None
context_len = 8048


def wrap_taxonomy(text):
    """Wraps user input with taxonomy if not already present"""
    if policy_v1 not in text:
        return policy_v1 + "\n\n" + text
    return text


# UI component states
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)


# Model loading function
def load_model(model_path):
    global tokenizer, model, processor, context_len

    logger.info(f"Loading model: {model_path}")

    try:
        # Check if it's a Qwen model
        if "qwenguard" in model_path.lower():
            model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
                model_path,
                torch_dtype="auto",
                device_map="auto"
            )
            processor = AutoProcessor.from_pretrained(model_path)
            tokenizer = processor.tokenizer

        # Otherwise assume it's a LlavaGuard model
        else:
            model = LlavaOnevisionForConditionalGeneration.from_pretrained(
                model_path,
                torch_dtype="auto",
                device_map="auto",
                trust_remote_code=True
            )
            tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
            processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)

        context_len = getattr(model.config, "max_position_embeddings", 8048)
        logger.info(f"Model {model_path} loaded successfully")
        return  # Remove return value to avoid Gradio warnings

    except Exception as e:
        logger.error(f"Error loading model {model_path}: {str(e)}")
        return  # Remove return value to avoid Gradio warnings


def get_model_list():
    models = [
        'AIML-TUDA/QwenGuard-v1.2-3B',
        'AIML-TUDA/QwenGuard-v1.2-7B',
        'AIML-TUDA/LlavaGuard-v1.2-0.5B-OV-hf',
        'AIML-TUDA/LlavaGuard-v1.2-7B-OV-hf',
    ]
    return models


def get_conv_log_filename():
    t = datetime.datetime.now()
    name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
    os.makedirs(os.path.dirname(name), exist_ok=True)
    return name


# Inference function
@spaces.GPU
def run_inference(prompt, image, temperature=0.2, top_p=0.95, max_tokens=512):
    global model, tokenizer, processor

    if model is None or processor is None:
        return "Model not loaded. Please select a model first."
    try:
        # Check if it's a Qwen model
        if isinstance(model, Qwen2_5_VLForConditionalGeneration):
            # Format for Qwen models
            messages = [
                {
                    "role": "user",
                    "content": [
                        {"type": "image", "image": image},
                        {"type": "text", "text": prompt}
                    ]
                }
            ]
            # Process input
            text_prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
            image_inputs, video_inputs = process_vision_info(messages)
            inputs = processor(
                text=[text_prompt],
                images=image_inputs,
                videos=video_inputs,
                padding=True,
                return_tensors="pt",
            )


        # Otherwise assume it's a LlavaGuard model
        else:
            conversation = [
                {
                    "role": "user",
                    "content": [
                        {"type": "image"},
                        {"type": "text", "text": prompt},
                    ],
                },
            ]
            text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
            inputs = processor(text=text_prompt, images=image, return_tensors="pt")

        inputs = {k: v.to(model.device) for k, v in inputs.items()}

        with torch.no_grad():
            generated_ids = model.generate(
                **inputs,
                do_sample=temperature > 0,
                temperature=temperature,
                top_p=top_p,
                max_new_tokens=max_tokens,
            )

        # Decode
        generated_ids_trimmed = generated_ids[0, inputs["input_ids"].shape[1]:]
        response = processor.decode(
            generated_ids_trimmed,
            skip_special_tokens=True,
            # clean_up_tokenization_spaces=False
        )
        print('response')
        print(response)

        return response.strip()

    except Exception as e:
        import traceback
        error_msg = f"Error during inference: {str(e)}\n{traceback.format_exc()}"
        print(error_msg)
        logger.error(error_msg)
        return f"Error processing image. Please try again."


# Gradio UI functions
get_window_url_params = """
function() {
    const params = new URLSearchParams(window.location.search);
    url_params = Object.fromEntries(params);
    console.log(url_params);
    return url_params;
}
"""


def load_demo(url_params, request: gr.Request):
    logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
    models = get_model_list()

    dropdown_update = gr.Dropdown(visible=True)
    if "model" in url_params:
        model = url_params["model"]
        if model in models:
            dropdown_update = gr.Dropdown(value=model, visible=True)
            load_model(model)

    state = default_conversation.copy()
    return state, dropdown_update


def load_demo_refresh_model_list(request: gr.Request):
    logger.info(f"load_demo. ip: {request.client.host}")
    models = get_model_list()
    state = default_conversation.copy()
    dropdown_update = gr.Dropdown(
        choices=models,
        value=models[0] if len(models) > 0 else ""
    )
    return state, dropdown_update


def vote_last_response(state, vote_type, model_selector, request: gr.Request):
    with open(get_conv_log_filename(), "a") as fout:
        data = {
            "tstamp": round(time.time(), 4),
            "type": vote_type,
            "model": model_selector,
            "state": state.dict(),
            "ip": request.client.host,
        }
        fout.write(json.dumps(data) + "\n")


def upvote_last_response(state, model_selector, request: gr.Request):
    logger.info(f"upvote. ip: {request.client.host}")
    vote_last_response(state, "upvote", model_selector, request)
    return ("",) + (disable_btn,) * 3


def downvote_last_response(state, model_selector, request: gr.Request):
    logger.info(f"downvote. ip: {request.client.host}")
    vote_last_response(state, "downvote", model_selector, request)
    return ("",) + (disable_btn,) * 3


def flag_last_response(state, model_selector, request: gr.Request):
    logger.info(f"flag. ip: {request.client.host}")
    vote_last_response(state, "flag", model_selector, request)
    return ("",) + (disable_btn,) * 3


def regenerate(state, image_process_mode, request: gr.Request):
    logger.info(f"regenerate. ip: {request.client.host}")
    if state.messages and len(state.messages) > 0:
        state.messages[-1][-1] = None
        if len(state.messages) > 1:
            prev_human_msg = state.messages[-2]
            if isinstance(prev_human_msg[0], tuple) and len(prev_human_msg[0]) >= 2:
                # Handle image process mode for previous message if it's a tuple with image
                new_msg = list(prev_human_msg)
                if len(prev_human_msg[0]) >= 3:
                    new_msg[0] = (prev_human_msg[0][0], prev_human_msg[0][1], image_process_mode)
                state.messages[-2] = new_msg

    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5


def clear_history(request: gr.Request):
    logger.info(f"clear_history. ip: {request.client.host}")
    state = default_conversation.copy()
    return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5


def add_text(state, text, image, image_process_mode, request: gr.Request):
    logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
    if len(text) <= 0 or image is None:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5

    text = wrap_taxonomy(text)

    # Reset conversation for new image-based query
    if image is not None:
        state = default_conversation.copy()

    # Set new prompt with image
    prompt = text
    if image is not None:
        prompt = (text, image, image_process_mode)

    state.set_prompt(prompt=prompt, image=image)
    state.skip_next = False

    return (state, state.to_gradio_chatbot(), default_taxonomy, None) + (disable_btn,) * 5


def llava_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request):
    start_tstamp = time.time()

    if state.skip_next:
        # This generate call is skipped due to invalid inputs
        yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
        return

    # Get the prompt and images
    prompt = state.get_prompt()
    all_images = state.get_image(return_pil=True)

    if not all_images:
        if not state.messages:
            state.messages = [["Error: No image provided", None]]
        else:
            state.messages[-1][-1] = "Error: No image provided"
        yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
        return

    # Load model if needed
    if model is None or model_selector != getattr(model, "_name_or_path", ""):
        load_model(model_selector)

    # Run inference
    output = run_inference(prompt, all_images[0], temperature, top_p, max_new_tokens)

    # Update the response in the conversation state
    if not state.messages:
        state.messages = [[prompt, output]]
    else:
        state.messages[-1][-1] = output
    state.current_response = output

    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5

    finish_tstamp = time.time()
    logger.info(f"Generated response in {finish_tstamp - start_tstamp:.2f}s")

    try:
        with open(get_conv_log_filename(), "a") as fout:
            data = {
                "tstamp": round(finish_tstamp, 4),
                "type": "chat",
                "model": model_selector,
                "start": round(start_tstamp, 4),
                "finish": round(finish_tstamp, 4),
                "state": state.dict(),
                "images": ['image'],
                "ip": request.client.host,
            }
            fout.write(json.dumps(data) + "\n")
    except Exception as e:
        logger.error(f"Error writing log: {str(e)}")


# UI Components
title_markdown = """
# LLAVAGUARD: VLM-based Safeguard for Vision Dataset Curation and Safety Assessment
[[Project Page](https://ml-research.github.io/human-centered-genai/projects/llavaguard/index.html)]
[[Code](https://github.com/ml-research/LlavaGuard)]
[[Model](https://huggingface.co/collections/AIML-TUDA/llavaguard-665b42e89803408ee8ec1086)]
[[Dataset](https://huggingface.co/datasets/aiml-tuda/llavaguard)]
[[LavaGuard](https://arxiv.org/abs/2406.05113)]
"""

tos_markdown = """
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
"""

learn_more_markdown = """
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
"""

block_css = """
#buttons button {
    min-width: min(120px,100%);
}
"""


def build_demo(embed_mode, cur_dir=None, concurrency_count=10):
    models = get_model_list()

    with gr.Blocks(title="LlavaGuard", theme=gr.themes.Default(), css=block_css) as demo:
        state = gr.State()

        if not embed_mode:
            gr.Markdown(title_markdown)

        with gr.Row():
            with gr.Column(scale=3):
                with gr.Row(elem_id="model_selector_row"):
                    model_selector = gr.Dropdown(
                        choices=models,
                        value=models[0] if len(models) > 0 else "",
                        interactive=True,
                        show_label=False,
                        container=False)

                imagebox = gr.Image(type="pil", label="Image", container=False)
                image_process_mode = gr.Radio(
                    ["Crop", "Resize", "Pad", "Default"],
                    value="Default",
                    label="Preprocess for non-square image", visible=False)

                if cur_dir is None:
                    cur_dir = os.path.dirname(os.path.abspath(__file__))

                gr.Examples(examples=[
                    [f"{cur_dir}/examples/image{i}.png"] for i in range(1, 6) if
                    os.path.exists(f"{cur_dir}/examples/image{i}.png")
                ], inputs=imagebox)

                with gr.Accordion("Parameters", open=False) as parameter_row:
                    temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True,
                                            label="Temperature")
                    top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.1, interactive=True, label="Top P")
                    max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True,
                                                  label="Max output tokens")

                with gr.Accordion("Safety Risk Taxonomy", open=False):
                    taxonomy_textbox = gr.Textbox(
                        label="Safety Risk Taxonomy",
                        show_label=True,
                        placeholder="Enter your safety policy here",
                        value=default_taxonomy,
                        lines=20)

            with gr.Column(scale=8):
                chatbot = gr.Chatbot(
                    elem_id="chatbot",
                    label="LLavaGuard Safety Assessment",
                    height=650,
                    layout="panel",
                )
                with gr.Row():
                    with gr.Column(scale=8):
                        textbox = gr.Textbox(
                            show_label=False,
                            placeholder="Enter your message here",
                            container=True,
                            value=default_taxonomy,
                            lines=3,
                        )
                    with gr.Column(scale=1, min_width=50):
                        submit_btn = gr.Button(value="Send", variant="primary")
                with gr.Row(elem_id="buttons") as button_row:
                    upvote_btn = gr.Button(value="πŸ‘  Upvote", interactive=False)
                    downvote_btn = gr.Button(value="πŸ‘Ž  Downvote", interactive=False)
                    flag_btn = gr.Button(value="⚠️  Flag", interactive=False)
                    regenerate_btn = gr.Button(value="πŸ”„  Regenerate", interactive=False)
                    clear_btn = gr.Button(value="πŸ—‘οΈ  Clear", interactive=False)

        if not embed_mode:
            gr.Markdown(tos_markdown)
            gr.Markdown(learn_more_markdown)
        url_params = gr.JSON(visible=False)

        # Register listeners
        btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]

        upvote_btn.click(
            upvote_last_response,
            [state, model_selector],
            [textbox, upvote_btn, downvote_btn, flag_btn]
        )

        downvote_btn.click(
            downvote_last_response,
            [state, model_selector],
            [textbox, upvote_btn, downvote_btn, flag_btn]
        )

        flag_btn.click(
            flag_last_response,
            [state, model_selector],
            [textbox, upvote_btn, downvote_btn, flag_btn]
        )

        model_selector.change(
            load_model,
            [model_selector],
            None
        )

        regenerate_btn.click(
            regenerate,
            [state, image_process_mode],
            [state, chatbot, textbox, imagebox] + btn_list
        ).then(
            llava_bot,
            [state, model_selector, temperature, top_p, max_output_tokens],
            [state, chatbot] + btn_list,
            concurrency_limit=concurrency_count
        )

        clear_btn.click(
            clear_history,
            None,
            [state, chatbot, textbox, imagebox] + btn_list,
            queue=False
        )

        textbox.submit(
            add_text,
            [state, textbox, imagebox, image_process_mode],
            [state, chatbot, textbox, imagebox] + btn_list,
            queue=False
        ).then(
            llava_bot,
            [state, model_selector, temperature, top_p, max_output_tokens],
            [state, chatbot] + btn_list,
            concurrency_limit=concurrency_count
        )

        submit_btn.click(
            add_text,
            [state, textbox, imagebox, image_process_mode],
            [state, chatbot, textbox, imagebox] + btn_list
        ).then(
            llava_bot,
            [state, model_selector, temperature, top_p, max_output_tokens],
            [state, chatbot] + btn_list,
            concurrency_limit=concurrency_count
        )

        demo.load(
            load_demo_refresh_model_list,
            None,
            [state, model_selector],
            queue=False
        )

    return demo


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int)
    parser.add_argument("--concurrency-count", type=int, default=5)
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--moderate", action="store_true")
    parser.add_argument("--embed", action="store_true")
    args = parser.parse_args()

    # Create log directory if it doesn't exist
    os.makedirs(LOGDIR, exist_ok=True)

    # GPU Check
    if torch.cuda.is_available():
        logger.info(f"CUDA available with {torch.cuda.device_count()} devices")
    else:
        logger.warning("CUDA not available! Models will run on CPU which may be very slow.")

    # Hugging Face token handling
    api_key = os.getenv("token")
    if api_key:
        from huggingface_hub import login

        login(token=api_key)
        logger.info("Logged in to Hugging Face Hub")

    # Launch Gradio app in a subprocess to avoid CUDA initialization in the main process
    from torch.multiprocessing import Process

    def launch_demo():
        try:
            demo = build_demo(embed_mode=args.embed, cur_dir='./', concurrency_count=args.concurrency_count)
            demo.queue(
                status_update_rate=10,
                api_open=False
            ).launch(
                server_name=args.host,
                server_port=args.port,
                share=args.share
            )
        except Exception as e:
            logger.error(f"Error launching demo: {e}")
            sys.exit(1)

    p = Process(target=launch_demo)
    p.start()
    p.join()