Update main.py
Browse files
main.py
CHANGED
@@ -7,19 +7,17 @@ import time
|
|
7 |
from typing import List, Optional, Union, Any
|
8 |
import httpx
|
9 |
from dotenv import load_dotenv
|
10 |
-
from fastapi import FastAPI
|
11 |
from fastapi.responses import JSONResponse, StreamingResponse
|
12 |
-
from pydantic import BaseModel
|
13 |
|
14 |
# --- Configuration ---
|
15 |
load_dotenv()
|
16 |
-
# Env variables for external services
|
17 |
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
|
18 |
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
|
19 |
SNAPZION_API_KEY = os.environ.get("SNAP", "")
|
20 |
|
21 |
# --- Dummy Model Definitions ---
|
22 |
-
# In a real application, these would be defined properly.
|
23 |
AVAILABLE_MODELS = [
|
24 |
{"id": "gpt-4-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
25 |
{"id": "gpt-4o", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
@@ -38,35 +36,56 @@ app = FastAPI(
|
|
38 |
|
39 |
# --- Helper Function for Random ID Generation ---
|
40 |
def generate_random_id(prefix: str, length: int = 29) -> str:
|
41 |
-
"""
|
42 |
-
Generates a cryptographically secure, random alphanumeric ID.
|
43 |
-
"""
|
44 |
population = string.ascii_letters + string.digits
|
45 |
random_part = "".join(secrets.choice(population) for _ in range(length))
|
46 |
return f"{prefix}{random_part}"
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
# === API Endpoints ===
|
49 |
@app.get("/v1/models")
|
50 |
async def list_models():
|
51 |
-
"""Lists the available models."""
|
52 |
return {"object": "list", "data": AVAILABLE_MODELS}
|
53 |
|
54 |
# === Chat Completion ===
|
55 |
-
class Message(BaseModel):
|
56 |
-
role: str
|
57 |
-
content: str
|
58 |
-
|
59 |
class ChatRequest(BaseModel):
|
60 |
messages: List[Message]
|
61 |
model: str
|
62 |
stream: Optional[bool] = False
|
63 |
tools: Optional[Any] = None
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
@app.post("/v1/chat/completions")
|
66 |
async def chat_completion(request: ChatRequest):
|
67 |
-
"""
|
68 |
-
Handles chat completion requests, supporting both streaming and non-streaming responses.
|
69 |
-
"""
|
70 |
model_id = MODEL_ALIASES.get(request.model, request.model)
|
71 |
chat_id = generate_random_id("chatcmpl-")
|
72 |
headers = {
|
@@ -76,191 +95,189 @@ async def chat_completion(request: ChatRequest):
|
|
76 |
'referer': 'https://www.chatwithmono.xyz/',
|
77 |
'user-agent': 'Mozilla/5.0',
|
78 |
}
|
79 |
-
if request.tools:
|
80 |
-
# Handle tool by giving in system prompt.
|
81 |
-
# Tool call must be encoded in <tool_call><tool_call> XML tag.
|
82 |
-
tool_prompt = f"""You have access to the following tools . To call a tool, please respond with JSON for a tool call within <tool_call><tool_call> XML tag. Respond in the format {{"name": tool name, "parameters": dictionary of argument name and its value}}. Do not use variables.
|
83 |
-
Tools:
|
84 |
-
{";".join(f"<tool>{tool}</tool>" for tool in request.tools)}
|
85 |
-
|
86 |
-
Response Format for tool call:
|
87 |
-
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
|
88 |
-
<tool_call>
|
89 |
-
{{"name": <function-name>, "arguments": <args-json-object>}}
|
90 |
-
</tool_call>
|
91 |
-
|
92 |
-
Example of tool calling:
|
93 |
-
<tool_call>
|
94 |
-
{{"name": "get_weather", "parameters": {{"city": "New York"}}}}
|
95 |
-
</tool_call>
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
100 |
request.messages[0].content += "\n\n" + tool_prompt
|
101 |
else:
|
102 |
-
request.messages.insert(0,
|
103 |
-
request_data = request.model_dump(exclude_unset=True)
|
104 |
|
105 |
payload = {
|
106 |
-
"messages":
|
107 |
"model": model_id
|
108 |
}
|
|
|
|
|
109 |
if request.stream:
|
110 |
async def event_stream():
|
111 |
created = int(time.time())
|
112 |
-
is_first_chunk = True
|
113 |
-
usage_info = None
|
114 |
-
is_tool_call = False
|
115 |
chunks_buffer = []
|
116 |
-
max_initial_chunks = 4
|
|
|
|
|
|
|
117 |
try:
|
118 |
async with httpx.AsyncClient(timeout=120) as client:
|
119 |
-
async with client.stream("POST", "https://www.chatwithmono.xyz/api/chat",
|
|
|
120 |
response.raise_for_status()
|
121 |
async for line in response.aiter_lines():
|
122 |
-
if not line:
|
|
|
123 |
if line.startswith("0:"):
|
124 |
try:
|
125 |
content_piece = json.loads(line[2:])
|
126 |
-
|
127 |
-
# Buffer the first few chunks
|
128 |
if len(chunks_buffer) < max_initial_chunks:
|
129 |
chunks_buffer.append(content_piece)
|
130 |
continue
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
134 |
if "<tool_call>" in full_buffer:
|
135 |
-
print("Tool call detected")
|
136 |
is_tool_call = True
|
137 |
-
|
138 |
-
|
139 |
-
if is_tool_call:
|
140 |
-
chunks_buffer.append(content_piece)
|
141 |
-
|
142 |
-
full_buffer = ''.join(chunks_buffer)
|
143 |
-
|
144 |
-
if "</tool_call>" in full_buffer:
|
145 |
-
print("Tool call End detected")
|
146 |
-
# Process tool call in the current chunk
|
147 |
-
tool_call_str = full_buffer.split("<tool_call>")[1].split("</tool_call>")[0]
|
148 |
-
tool_call_json = json.loads(tool_call_str.strip())
|
149 |
-
delta = {
|
150 |
-
"content": None,
|
151 |
-
"tool_calls": [{
|
152 |
-
"index": 0,
|
153 |
-
"id": generate_random_id("call_"),
|
154 |
-
"type": "function",
|
155 |
-
"function": {
|
156 |
-
"name": tool_call_json["name"],
|
157 |
-
"arguments": json.dumps(tool_call_json["parameters"])
|
158 |
-
}
|
159 |
-
}]
|
160 |
-
}
|
161 |
-
chunk_data = {
|
162 |
-
"id": chat_id, "object": "chat.completion.chunk", "created": created,
|
163 |
-
"model": model_id,
|
164 |
-
"choices": [{"index": 0, "delta": delta, "finish_reason": None}],
|
165 |
-
"usage": None
|
166 |
-
}
|
167 |
-
yield f"data: {json.dumps(chunk_data)}\n\n"
|
168 |
else:
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
else:
|
171 |
-
|
172 |
-
|
173 |
-
if
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
elif line.startswith(("e:", "d:")):
|
196 |
-
try:
|
197 |
-
usage_info = json.loads(line[2:]).get("usage")
|
198 |
-
except (json.JSONDecodeError, AttributeError): pass
|
199 |
break
|
200 |
|
201 |
-
final_usage = None
|
202 |
-
if usage_info:
|
203 |
-
prompt_tokens = usage_info.get("promptTokens", 0)
|
204 |
-
completion_tokens = usage_info.get("completionTokens", 0)
|
205 |
-
final_usage = {
|
206 |
-
"prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens,
|
207 |
-
"total_tokens": prompt_tokens + completion_tokens,
|
208 |
-
}
|
209 |
-
done_chunk = {
|
210 |
-
"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
|
211 |
-
"choices": [{
|
212 |
-
"index": 0,
|
213 |
-
"delta": {"role": "assistant", "content": None, "function_call": None, "tool_calls": None},
|
214 |
-
"finish_reason": "stop"
|
215 |
-
}],
|
216 |
-
"usage": final_usage
|
217 |
-
}
|
218 |
-
yield f"data: {json.dumps(done_chunk)}\n\n"
|
219 |
except httpx.HTTPStatusError as e:
|
220 |
error_content = {
|
221 |
"error": {
|
222 |
-
"message": f"Upstream
|
223 |
-
"type": "upstream_error",
|
|
|
224 |
}
|
225 |
}
|
226 |
yield f"data: {json.dumps(error_content)}\n\n"
|
227 |
finally:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
yield "data: [DONE]\n\n"
|
|
|
229 |
return StreamingResponse(event_stream(), media_type="text/event-stream")
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
try:
|
234 |
async with httpx.AsyncClient(timeout=120) as client:
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
tool_call_json = [{"id": generate_random_id("call_"),"function": {"name": tool_call["name"], "arguments": json.dumps(tool_call["parameters"])}}]
|
249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
"
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
except httpx.HTTPStatusError as e:
|
262 |
-
return JSONResponse(
|
|
|
|
|
|
|
263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
# === Image Generation ===
|
266 |
class ImageGenerationRequest(BaseModel):
|
@@ -272,40 +289,65 @@ class ImageGenerationRequest(BaseModel):
|
|
272 |
|
273 |
@app.post("/v1/images/generations")
|
274 |
async def generate_images(request: ImageGenerationRequest):
|
275 |
-
"""Handles image generation requests."""
|
276 |
results = []
|
277 |
try:
|
278 |
async with httpx.AsyncClient(timeout=120) as client:
|
279 |
for _ in range(request.n):
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
|
|
|
|
285 |
resp.raise_for_status()
|
286 |
data = resp.json()
|
287 |
b64_image = data.get("image")
|
288 |
-
|
|
|
|
|
|
|
|
|
289 |
if SNAPZION_API_KEY:
|
290 |
-
|
291 |
-
|
292 |
-
|
|
|
|
|
|
|
293 |
upload_resp.raise_for_status()
|
294 |
-
|
295 |
-
image_url = upload_data.get("url")
|
296 |
else:
|
297 |
image_url = f"data:image/png;base64,{b64_image}"
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
299 |
else:
|
300 |
-
|
|
|
301 |
resp = await client.get(IMAGE_API_URL, params=params)
|
302 |
resp.raise_for_status()
|
303 |
data = resp.json()
|
304 |
-
results.append({
|
|
|
|
|
|
|
|
|
|
|
305 |
except httpx.HTTPStatusError as e:
|
306 |
-
return JSONResponse(
|
|
|
|
|
|
|
307 |
except Exception as e:
|
308 |
-
return JSONResponse(
|
|
|
|
|
|
|
|
|
309 |
return {"created": int(time.time()), "data": results}
|
310 |
|
311 |
# === Moderation Endpoint ===
|
@@ -315,67 +357,76 @@ class ModerationRequest(BaseModel):
|
|
315 |
|
316 |
@app.post("/v1/moderations")
|
317 |
async def create_moderation(request: ModerationRequest):
|
318 |
-
"""
|
319 |
-
Handles moderation requests, conforming to the OpenAI API specification.
|
320 |
-
Includes a custom 'reason' field in the result if provided by the upstream API.
|
321 |
-
"""
|
322 |
input_texts = [request.input] if isinstance(request.input, str) else request.input
|
323 |
if not input_texts:
|
324 |
-
|
325 |
-
|
|
|
|
|
|
|
326 |
headers = {
|
327 |
'Content-Type': 'application/json',
|
328 |
-
'User-Agent': 'Mozilla/5.0
|
329 |
'Referer': 'https://www.chatwithmono.xyz/',
|
330 |
}
|
|
|
331 |
results = []
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
|
|
|
|
|
|
337 |
resp.raise_for_status()
|
338 |
-
|
339 |
-
|
340 |
-
|
|
|
|
|
341 |
openai_categories = {
|
342 |
-
"hate":
|
343 |
-
"
|
344 |
-
"self-harm":
|
345 |
-
"sexual":
|
346 |
-
"
|
|
|
|
|
347 |
}
|
348 |
-
|
349 |
-
flagged = upstream_data.get("overall_sentiment") == "flagged"
|
350 |
result_item = {
|
351 |
"flagged": flagged,
|
352 |
"categories": openai_categories,
|
353 |
-
"category_scores":
|
354 |
}
|
355 |
-
|
356 |
-
#
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
result_item["reason"] = reason
|
361 |
-
|
362 |
results.append(result_item)
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
"id": generate_random_id("modr-"),
|
373 |
"model": request.model,
|
374 |
-
"results": results
|
375 |
}
|
376 |
-
return JSONResponse(content=final_response)
|
377 |
|
378 |
# --- Main Execution ---
|
379 |
if __name__ == "__main__":
|
380 |
import uvicorn
|
381 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
7 |
from typing import List, Optional, Union, Any
|
8 |
import httpx
|
9 |
from dotenv import load_dotenv
|
10 |
+
from fastapi import FastAPI, HTTPException
|
11 |
from fastapi.responses import JSONResponse, StreamingResponse
|
12 |
+
from pydantic import BaseModel, Field
|
13 |
|
14 |
# --- Configuration ---
|
15 |
load_dotenv()
|
|
|
16 |
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
|
17 |
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
|
18 |
SNAPZION_API_KEY = os.environ.get("SNAP", "")
|
19 |
|
20 |
# --- Dummy Model Definitions ---
|
|
|
21 |
AVAILABLE_MODELS = [
|
22 |
{"id": "gpt-4-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
23 |
{"id": "gpt-4o", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
|
|
36 |
|
37 |
# --- Helper Function for Random ID Generation ---
|
38 |
def generate_random_id(prefix: str, length: int = 29) -> str:
|
|
|
|
|
|
|
39 |
population = string.ascii_letters + string.digits
|
40 |
random_part = "".join(secrets.choice(population) for _ in range(length))
|
41 |
return f"{prefix}{random_part}"
|
42 |
|
43 |
+
# === Tool Call Models ===
|
44 |
+
class FunctionCall(BaseModel):
|
45 |
+
name: str
|
46 |
+
arguments: str
|
47 |
+
|
48 |
+
class ToolCall(BaseModel):
|
49 |
+
id: str
|
50 |
+
type: str = "function"
|
51 |
+
function: FunctionCall
|
52 |
+
|
53 |
+
# === Message Models ===
|
54 |
+
class Message(BaseModel):
|
55 |
+
role: str
|
56 |
+
content: Optional[str] = None
|
57 |
+
name: Optional[str] = None
|
58 |
+
tool_calls: Optional[List[ToolCall]] = None
|
59 |
+
tool_call_id: Optional[str] = None
|
60 |
+
|
61 |
# === API Endpoints ===
|
62 |
@app.get("/v1/models")
|
63 |
async def list_models():
|
|
|
64 |
return {"object": "list", "data": AVAILABLE_MODELS}
|
65 |
|
66 |
# === Chat Completion ===
|
|
|
|
|
|
|
|
|
67 |
class ChatRequest(BaseModel):
|
68 |
messages: List[Message]
|
69 |
model: str
|
70 |
stream: Optional[bool] = False
|
71 |
tools: Optional[Any] = None
|
72 |
|
73 |
+
def build_tool_prompt(tools: List[Any]) -> str:
|
74 |
+
tool_definitions = "\n".join([
|
75 |
+
f"- {tool['function']['name']}: {tool['function'].get('description', 'No description available')}"
|
76 |
+
for tool in tools
|
77 |
+
])
|
78 |
+
return f"""You have access to tools. To call a tool, respond with JSON inside <tool_call></tool_call> tags.
|
79 |
+
Available Tools:
|
80 |
+
{tool_definitions}
|
81 |
+
|
82 |
+
Response Format:
|
83 |
+
<tool_call>
|
84 |
+
{{"name": "tool_name", "parameters": {{"arg1": "value1"}}}}
|
85 |
+
</tool_call>"""
|
86 |
+
|
87 |
@app.post("/v1/chat/completions")
|
88 |
async def chat_completion(request: ChatRequest):
|
|
|
|
|
|
|
89 |
model_id = MODEL_ALIASES.get(request.model, request.model)
|
90 |
chat_id = generate_random_id("chatcmpl-")
|
91 |
headers = {
|
|
|
95 |
'referer': 'https://www.chatwithmono.xyz/',
|
96 |
'user-agent': 'Mozilla/5.0',
|
97 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
# Handle tool definitions
|
100 |
+
if request.tools:
|
101 |
+
tool_prompt = build_tool_prompt(request.tools)
|
102 |
+
if request.messages and request.messages[0].role == "system":
|
103 |
request.messages[0].content += "\n\n" + tool_prompt
|
104 |
else:
|
105 |
+
request.messages.insert(0, Message(role="system", content=tool_prompt))
|
|
|
106 |
|
107 |
payload = {
|
108 |
+
"messages": [msg.model_dump(exclude_none=True) for msg in request.messages],
|
109 |
"model": model_id
|
110 |
}
|
111 |
+
|
112 |
+
# Streaming response
|
113 |
if request.stream:
|
114 |
async def event_stream():
|
115 |
created = int(time.time())
|
|
|
|
|
|
|
116 |
chunks_buffer = []
|
117 |
+
max_initial_chunks = 4
|
118 |
+
is_tool_call = False
|
119 |
+
tool_call_content = ""
|
120 |
+
|
121 |
try:
|
122 |
async with httpx.AsyncClient(timeout=120) as client:
|
123 |
+
async with client.stream("POST", "https://www.chatwithmono.xyz/api/chat",
|
124 |
+
headers=headers, json=payload) as response:
|
125 |
response.raise_for_status()
|
126 |
async for line in response.aiter_lines():
|
127 |
+
if not line:
|
128 |
+
continue
|
129 |
if line.startswith("0:"):
|
130 |
try:
|
131 |
content_piece = json.loads(line[2:])
|
132 |
+
# Buffer initial chunks
|
|
|
133 |
if len(chunks_buffer) < max_initial_chunks:
|
134 |
chunks_buffer.append(content_piece)
|
135 |
continue
|
136 |
+
|
137 |
+
# Check for tool call pattern
|
138 |
+
if not is_tool_call:
|
139 |
+
full_buffer = ''.join(chunks_buffer + [content_piece])
|
140 |
if "<tool_call>" in full_buffer:
|
|
|
141 |
is_tool_call = True
|
142 |
+
tool_call_content = full_buffer
|
143 |
+
chunks_buffer = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
else:
|
145 |
+
# Send buffered chunks
|
146 |
+
if chunks_buffer:
|
147 |
+
delta = {"content": "".join(chunks_buffer)}
|
148 |
+
if not tool_call_content: # Only add role in first chunk
|
149 |
+
delta["role"] = "assistant"
|
150 |
+
yield create_chunk(chat_id, created, model_id, delta)
|
151 |
+
chunks_buffer = []
|
152 |
+
|
153 |
+
# Send current chunk
|
154 |
+
delta = {"content": content_piece}
|
155 |
+
yield create_chunk(chat_id, created, model_id, delta)
|
156 |
else:
|
157 |
+
# Accumulate tool call content
|
158 |
+
tool_call_content += content_piece
|
159 |
+
if "</tool_call>" in tool_call_content:
|
160 |
+
tool_call_str = tool_call_content.split("<tool_call>")[1].split("</tool_call>")[0].strip()
|
161 |
+
try:
|
162 |
+
tool_call_data = json.loads(tool_call_str)
|
163 |
+
tool_call = ToolCall(
|
164 |
+
id=generate_random_id("call_"),
|
165 |
+
function=FunctionCall(
|
166 |
+
name=tool_call_data["name"],
|
167 |
+
arguments=json.dumps(tool_call_data.get("parameters", {}))
|
168 |
+
)
|
169 |
+
delta = {
|
170 |
+
"content": None,
|
171 |
+
"tool_calls": [tool_call.model_dump()]
|
172 |
+
}
|
173 |
+
yield create_chunk(chat_id, created, model_id, delta)
|
174 |
+
is_tool_call = False
|
175 |
+
tool_call_content = ""
|
176 |
+
except (json.JSONDecodeError, KeyError) as e:
|
177 |
+
print(f"Tool call parsing error: {e}")
|
178 |
+
except json.JSONDecodeError:
|
179 |
+
continue
|
180 |
+
|
181 |
elif line.startswith(("e:", "d:")):
|
|
|
|
|
|
|
182 |
break
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
except httpx.HTTPStatusError as e:
|
185 |
error_content = {
|
186 |
"error": {
|
187 |
+
"message": f"Upstream error: {e.response.status_code}",
|
188 |
+
"type": "upstream_error",
|
189 |
+
"code": str(e.response.status_code)
|
190 |
}
|
191 |
}
|
192 |
yield f"data: {json.dumps(error_content)}\n\n"
|
193 |
finally:
|
194 |
+
# Finish signal
|
195 |
+
done_chunk = {
|
196 |
+
"id": chat_id,
|
197 |
+
"object": "chat.completion.chunk",
|
198 |
+
"created": created,
|
199 |
+
"model": model_id,
|
200 |
+
"choices": [{
|
201 |
+
"index": 0,
|
202 |
+
"delta": {},
|
203 |
+
"finish_reason": "stop"
|
204 |
+
}]
|
205 |
+
}
|
206 |
+
yield f"data: {json.dumps(done_chunk)}\n\n"
|
207 |
yield "data: [DONE]\n\n"
|
208 |
+
|
209 |
return StreamingResponse(event_stream(), media_type="text/event-stream")
|
210 |
+
|
211 |
+
# Non-streaming response
|
212 |
+
else:
|
213 |
try:
|
214 |
async with httpx.AsyncClient(timeout=120) as client:
|
215 |
+
response = await client.post(
|
216 |
+
"https://www.chatwithmono.xyz/api/chat",
|
217 |
+
headers=headers,
|
218 |
+
json=payload
|
219 |
+
)
|
220 |
+
response.raise_for_status()
|
221 |
+
content = ""
|
222 |
+
for line in response.text.splitlines():
|
223 |
+
if line.startswith("0:"):
|
224 |
+
try:
|
225 |
+
content += json.loads(line[2:])
|
226 |
+
except json.JSONDecodeError:
|
227 |
+
continue
|
|
|
228 |
|
229 |
+
tool_calls = None
|
230 |
+
if "<tool_call>" in content and "</tool_call>" in content:
|
231 |
+
try:
|
232 |
+
tool_call_str = content.split("<tool_call>")[1].split("</tool_call>")[0].strip()
|
233 |
+
tool_call_data = json.loads(tool_call_str)
|
234 |
+
tool_call = ToolCall(
|
235 |
+
id=generate_random_id("call_"),
|
236 |
+
function=FunctionCall(
|
237 |
+
name=tool_call_data["name"],
|
238 |
+
arguments=json.dumps(tool_call_data.get("parameters", {}))
|
239 |
+
)
|
240 |
+
tool_calls = [tool_call.model_dump()]
|
241 |
+
content = None # Clear content for tool call
|
242 |
+
except (json.JSONDecodeError, KeyError) as e:
|
243 |
+
print(f"Tool call parsing error: {e}")
|
244 |
|
245 |
+
return JSONResponse(content={
|
246 |
+
"id": chat_id,
|
247 |
+
"object": "chat.completion",
|
248 |
+
"created": int(time.time()),
|
249 |
+
"model": model_id,
|
250 |
+
"choices": [{
|
251 |
+
"index": 0,
|
252 |
+
"message": {
|
253 |
+
"role": "assistant",
|
254 |
+
"content": content,
|
255 |
+
"tool_calls": tool_calls
|
256 |
+
},
|
257 |
+
"finish_reason": "tool_calls" if tool_calls else "stop"
|
258 |
+
}],
|
259 |
+
"usage": {
|
260 |
+
"prompt_tokens": 0,
|
261 |
+
"completion_tokens": 0,
|
262 |
+
"total_tokens": 0
|
263 |
+
}
|
264 |
+
})
|
265 |
+
|
266 |
except httpx.HTTPStatusError as e:
|
267 |
+
return JSONResponse(
|
268 |
+
status_code=502,
|
269 |
+
content={"error": {"message": f"Upstream error: {e.response.text}", "type": "upstream_error"}}
|
270 |
+
)
|
271 |
|
272 |
+
def create_chunk(chat_id: str, created: int, model: str, delta: dict) -> str:
|
273 |
+
chunk = {
|
274 |
+
"id": chat_id,
|
275 |
+
"object": "chat.completion.chunk",
|
276 |
+
"created": created,
|
277 |
+
"model": model,
|
278 |
+
"choices": [{"index": 0, "delta": delta}]
|
279 |
+
}
|
280 |
+
return f"data: {json.dumps(chunk)}\n\n"
|
281 |
|
282 |
# === Image Generation ===
|
283 |
class ImageGenerationRequest(BaseModel):
|
|
|
289 |
|
290 |
@app.post("/v1/images/generations")
|
291 |
async def generate_images(request: ImageGenerationRequest):
|
|
|
292 |
results = []
|
293 |
try:
|
294 |
async with httpx.AsyncClient(timeout=120) as client:
|
295 |
for _ in range(request.n):
|
296 |
+
if request.model in ["gpt-image-1", "dall-e-3", "dall-e-2", "nextlm-image-1"]:
|
297 |
+
# Mono image generation
|
298 |
+
resp = await client.post(
|
299 |
+
"https://www.chatwithmono.xyz/api/image",
|
300 |
+
json={"prompt": request.prompt, "model": request.model},
|
301 |
+
headers={'Content-Type': 'application/json'}
|
302 |
+
)
|
303 |
resp.raise_for_status()
|
304 |
data = resp.json()
|
305 |
b64_image = data.get("image")
|
306 |
+
|
307 |
+
if not b64_image:
|
308 |
+
raise HTTPException(502, "Missing image in response")
|
309 |
+
|
310 |
+
# Upload to Snapzion if API key available
|
311 |
if SNAPZION_API_KEY:
|
312 |
+
files = {'file': ('image.png', base64.b64decode(b64_image), 'image/png')}
|
313 |
+
upload_resp = await client.post(
|
314 |
+
SNAPZION_UPLOAD_URL,
|
315 |
+
files=files,
|
316 |
+
headers={"Authorization": SNAPZION_API_KEY}
|
317 |
+
)
|
318 |
upload_resp.raise_for_status()
|
319 |
+
image_url = upload_resp.json().get("url")
|
|
|
320 |
else:
|
321 |
image_url = f"data:image/png;base64,{b64_image}"
|
322 |
+
|
323 |
+
results.append({
|
324 |
+
"url": image_url,
|
325 |
+
"b64_json": b64_image,
|
326 |
+
"revised_prompt": data.get("revised_prompt", request.prompt)
|
327 |
+
})
|
328 |
else:
|
329 |
+
# Default image generation
|
330 |
+
params = {"prompt": request.prompt, "aspect_ratio": request.aspect_ratio}
|
331 |
resp = await client.get(IMAGE_API_URL, params=params)
|
332 |
resp.raise_for_status()
|
333 |
data = resp.json()
|
334 |
+
results.append({
|
335 |
+
"url": data.get("image_link"),
|
336 |
+
"b64_json": data.get("base64_output"),
|
337 |
+
"revised_prompt": request.prompt
|
338 |
+
})
|
339 |
+
|
340 |
except httpx.HTTPStatusError as e:
|
341 |
+
return JSONResponse(
|
342 |
+
status_code=502,
|
343 |
+
content={"error": f"Image service error: {e.response.status_code}"}
|
344 |
+
)
|
345 |
except Exception as e:
|
346 |
+
return JSONResponse(
|
347 |
+
status_code=500,
|
348 |
+
content={"error": f"Internal error: {str(e)}"}
|
349 |
+
)
|
350 |
+
|
351 |
return {"created": int(time.time()), "data": results}
|
352 |
|
353 |
# === Moderation Endpoint ===
|
|
|
357 |
|
358 |
@app.post("/v1/moderations")
|
359 |
async def create_moderation(request: ModerationRequest):
|
|
|
|
|
|
|
|
|
360 |
input_texts = [request.input] if isinstance(request.input, str) else request.input
|
361 |
if not input_texts:
|
362 |
+
return JSONResponse(
|
363 |
+
status_code=400,
|
364 |
+
content={"error": "At least one input string is required"}
|
365 |
+
)
|
366 |
+
|
367 |
headers = {
|
368 |
'Content-Type': 'application/json',
|
369 |
+
'User-Agent': 'Mozilla/5.0',
|
370 |
'Referer': 'https://www.chatwithmono.xyz/',
|
371 |
}
|
372 |
+
|
373 |
results = []
|
374 |
+
async with httpx.AsyncClient(timeout=30) as client:
|
375 |
+
for text in input_texts:
|
376 |
+
try:
|
377 |
+
resp = await client.post(
|
378 |
+
"https://www.chatwithmono.xyz/api/moderation",
|
379 |
+
json={"text": text},
|
380 |
+
headers=headers
|
381 |
+
)
|
382 |
resp.raise_for_status()
|
383 |
+
data = resp.json()
|
384 |
+
|
385 |
+
# Transform to OpenAI format
|
386 |
+
flagged = data.get("overall_sentiment") == "flagged"
|
387 |
+
categories = data.get("categories", {})
|
388 |
openai_categories = {
|
389 |
+
"hate": categories.get("hate", False),
|
390 |
+
"hate/threatening": False,
|
391 |
+
"self-harm": categories.get("self-harm", False),
|
392 |
+
"sexual": categories.get("sexual", False),
|
393 |
+
"sexual/minors": False,
|
394 |
+
"violence": categories.get("violence", False),
|
395 |
+
"violence/graphic": False,
|
396 |
}
|
397 |
+
|
|
|
398 |
result_item = {
|
399 |
"flagged": flagged,
|
400 |
"categories": openai_categories,
|
401 |
+
"category_scores": {k: 1.0 if v else 0.0 for k, v in openai_categories.items()}
|
402 |
}
|
403 |
+
|
404 |
+
# Add reason if available
|
405 |
+
if "reason" in data:
|
406 |
+
result_item["reason"] = data["reason"]
|
407 |
+
|
|
|
|
|
408 |
results.append(result_item)
|
409 |
+
|
410 |
+
except httpx.HTTPStatusError:
|
411 |
+
results.append({
|
412 |
+
"flagged": False,
|
413 |
+
"categories": {k: False for k in [
|
414 |
+
"hate", "hate/threatening", "self-harm",
|
415 |
+
"sexual", "sexual/minors", "violence", "violence/graphic"
|
416 |
+
]},
|
417 |
+
"category_scores": {k: 0.0 for k in [
|
418 |
+
"hate", "hate/threatening", "self-harm",
|
419 |
+
"sexual", "sexual/minors", "violence", "violence/graphic"
|
420 |
+
]}
|
421 |
+
})
|
422 |
+
|
423 |
+
return {
|
424 |
"id": generate_random_id("modr-"),
|
425 |
"model": request.model,
|
426 |
+
"results": results
|
427 |
}
|
|
|
428 |
|
429 |
# --- Main Execution ---
|
430 |
if __name__ == "__main__":
|
431 |
import uvicorn
|
432 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|