Update main.py
Browse files
main.py
CHANGED
@@ -4,54 +4,58 @@ import os
|
|
4 |
import secrets
|
5 |
import string
|
6 |
import time
|
|
|
7 |
from typing import List, Optional, Union, Any
|
|
|
8 |
import httpx
|
9 |
from dotenv import load_dotenv
|
10 |
-
from fastapi import FastAPI
|
11 |
from fastapi.responses import JSONResponse, StreamingResponse
|
12 |
-
from pydantic import BaseModel
|
|
|
|
|
|
|
13 |
|
14 |
# --- Configuration ---
|
15 |
load_dotenv()
|
|
|
16 |
# Env variables for external services
|
17 |
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
|
18 |
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
|
19 |
SNAPZION_API_KEY = os.environ.get("SNAP", "")
|
|
|
|
|
|
|
20 |
|
21 |
-
# ---
|
22 |
-
#
|
23 |
AVAILABLE_MODELS = [
|
24 |
{"id": "gpt-4-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
25 |
{"id": "gpt-4o", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
26 |
{"id": "gpt-3.5-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
27 |
{"id": "dall-e-3", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
28 |
{"id": "text-moderation-stable", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
|
|
29 |
]
|
30 |
MODEL_ALIASES = {}
|
31 |
|
32 |
-
# --- FastAPI Application ---
|
33 |
app = FastAPI(
|
34 |
title="OpenAI Compatible API",
|
35 |
description="An adapter for various services to be compatible with the OpenAI API specification.",
|
36 |
-
version="1.
|
37 |
)
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
""
|
42 |
-
|
43 |
-
""
|
44 |
-
|
45 |
-
random_part = "".join(secrets.choice(population) for _ in range(length))
|
46 |
-
return f"{prefix}{random_part}"
|
47 |
|
48 |
-
#
|
49 |
-
@app.get("/v1/models")
|
50 |
-
async def list_models():
|
51 |
-
"""Lists the available models."""
|
52 |
-
return {"object": "list", "data": AVAILABLE_MODELS}
|
53 |
|
54 |
-
#
|
55 |
class Message(BaseModel):
|
56 |
role: str
|
57 |
content: str
|
@@ -62,11 +66,58 @@ class ChatRequest(BaseModel):
|
|
62 |
stream: Optional[bool] = False
|
63 |
tools: Optional[Any] = None
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
async def chat_completion(request: ChatRequest):
|
67 |
-
"""
|
68 |
-
Handles chat completion requests, supporting both streaming and non-streaming responses.
|
69 |
-
"""
|
70 |
model_id = MODEL_ALIASES.get(request.model, request.model)
|
71 |
chat_id = generate_random_id("chatcmpl-")
|
72 |
headers = {
|
@@ -76,201 +127,142 @@ async def chat_completion(request: ChatRequest):
|
|
76 |
'referer': 'https://www.chatwithmono.xyz/',
|
77 |
'user-agent': 'Mozilla/5.0',
|
78 |
}
|
|
|
|
|
79 |
if request.tools:
|
80 |
-
|
81 |
-
|
82 |
-
tool_prompt = f"""You have access to the following tools . To call a tool, please respond with JSON for a tool call within <tool_call><tool_call> XML tag. Respond in the format {{"name": tool name, "parameters": dictionary of argument name and its value}}. Do not use variables.
|
83 |
-
Tools:
|
84 |
-
{";".join(f"<tool>{tool}</tool>" for tool in request.tools)}
|
85 |
-
|
86 |
Response Format for tool call:
|
87 |
-
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
|
88 |
<tool_call>
|
89 |
{{"name": <function-name>, "arguments": <args-json-object>}}
|
90 |
-
</tool_call>
|
91 |
-
|
92 |
-
Example of tool calling:
|
93 |
-
<tool_call>
|
94 |
-
{{"name": "get_weather", "parameters": {{"city": "New York"}}}}
|
95 |
-
</tool_call>
|
96 |
-
|
97 |
-
Using tools is recommended.
|
98 |
-
"""
|
99 |
if request.messages[0].role == "system":
|
100 |
request.messages[0].content += "\n\n" + tool_prompt
|
101 |
else:
|
102 |
-
request.messages.insert(0,
|
103 |
-
|
|
|
104 |
|
105 |
-
payload = {
|
106 |
-
"messages": request_data["messages"],
|
107 |
-
"model": model_id
|
108 |
-
}
|
109 |
if request.stream:
|
110 |
async def event_stream():
|
111 |
created = int(time.time())
|
112 |
-
is_first_chunk = True
|
113 |
usage_info = None
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
117 |
try:
|
118 |
async with httpx.AsyncClient(timeout=120) as client:
|
119 |
-
async with client.stream("POST",
|
120 |
response.raise_for_status()
|
121 |
async for line in response.aiter_lines():
|
122 |
if not line: continue
|
123 |
if line.startswith("0:"):
|
124 |
try:
|
125 |
content_piece = json.loads(line[2:])
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
"tool_calls": [{
|
152 |
-
"index": 0,
|
153 |
-
"id": generate_random_id("call_"),
|
154 |
-
"type": "function",
|
155 |
-
"function": {
|
156 |
-
"name": tool_call_json["name"],
|
157 |
-
"arguments": json.dumps(tool_call_json["parameters"])
|
158 |
-
}
|
159 |
-
}]
|
160 |
-
}
|
161 |
-
chunk_data = {
|
162 |
-
"id": chat_id, "object": "chat.completion.chunk", "created": created,
|
163 |
-
"model": model_id,
|
164 |
-
"choices": [{"index": 0, "delta": delta, "finish_reason": None}],
|
165 |
-
"usage": None
|
166 |
-
}
|
167 |
-
yield f"data: {json.dumps(chunk_data)}\n\n"
|
168 |
-
else:
|
169 |
-
continue
|
170 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
# Regular content
|
173 |
-
if is_first_chunk:
|
174 |
-
delta = {"content": "".join(chunks_buffer), "tool_calls": None}
|
175 |
-
delta["role"] = "assistant"
|
176 |
-
is_first_chunk = False
|
177 |
-
chunk_data = {
|
178 |
-
"id": chat_id, "object": "chat.completion.chunk", "created": created,
|
179 |
-
"model": model_id,
|
180 |
-
"choices": [{"index": 0, "delta": delta, "finish_reason": None}],
|
181 |
-
"usage": None
|
182 |
-
}
|
183 |
-
yield f"data: {json.dumps(chunk_data)}\n\n"
|
184 |
-
|
185 |
-
delta = {"content": content_piece, "tool_calls": None}
|
186 |
-
|
187 |
-
chunk_data = {
|
188 |
-
"id": chat_id, "object": "chat.completion.chunk", "created": created,
|
189 |
-
"model": model_id,
|
190 |
-
"choices": [{"index": 0, "delta": delta, "finish_reason": None}],
|
191 |
-
"usage": None
|
192 |
-
}
|
193 |
-
yield f"data: {json.dumps(chunk_data)}\n\n"
|
194 |
-
except json.JSONDecodeError: continue
|
195 |
elif line.startswith(("e:", "d:")):
|
196 |
try:
|
197 |
usage_info = json.loads(line[2:]).get("usage")
|
198 |
except (json.JSONDecodeError, AttributeError): pass
|
199 |
break
|
200 |
-
|
|
|
201 |
final_usage = None
|
202 |
if usage_info:
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
"prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens,
|
207 |
-
"total_tokens": prompt_tokens + completion_tokens,
|
208 |
-
}
|
209 |
-
done_chunk = {
|
210 |
-
"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
|
211 |
-
"choices": [{
|
212 |
-
"index": 0,
|
213 |
-
"delta": {"role": "assistant", "content": None, "function_call": None, "tool_calls": None},
|
214 |
-
"finish_reason": "stop"
|
215 |
-
}],
|
216 |
-
"usage": final_usage
|
217 |
-
}
|
218 |
yield f"data: {json.dumps(done_chunk)}\n\n"
|
|
|
219 |
except httpx.HTTPStatusError as e:
|
220 |
-
error_content = {
|
221 |
-
"error": {
|
222 |
-
"message": f"Upstream API error: {e.response.status_code}. Details: {e.response.text}",
|
223 |
-
"type": "upstream_error", "code": str(e.response.status_code)
|
224 |
-
}
|
225 |
-
}
|
226 |
yield f"data: {json.dumps(error_content)}\n\n"
|
227 |
finally:
|
228 |
yield "data: [DONE]\n\n"
|
|
|
229 |
return StreamingResponse(event_stream(), media_type="text/event-stream")
|
230 |
else: # Non-streaming
|
231 |
-
|
232 |
-
tool_call_json = None
|
233 |
try:
|
234 |
async with httpx.AsyncClient(timeout=120) as client:
|
235 |
-
async with client.stream("POST",
|
236 |
response.raise_for_status()
|
237 |
async for chunk in response.aiter_lines():
|
238 |
if chunk.startswith("0:"):
|
239 |
-
try:
|
240 |
except: continue
|
241 |
elif chunk.startswith(("e:", "d:")):
|
242 |
try: usage_info = json.loads(chunk[2:]).get("usage", {})
|
243 |
except: continue
|
244 |
|
245 |
-
|
246 |
-
|
|
|
|
|
247 |
tool_call = json.loads(tool_call_str.strip())
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
return JSONResponse(content={
|
253 |
"id": chat_id, "object": "chat.completion", "created": int(time.time()), "model": model_id,
|
254 |
-
"choices": [{"index": 0, "message": {"role": "assistant", "content":
|
255 |
-
"usage": {
|
256 |
-
"prompt_tokens": usage_info.get("promptTokens", 0),
|
257 |
-
"completion_tokens": usage_info.get("completionTokens", 0),
|
258 |
-
"total_tokens": usage_info.get("promptTokens", 0) + usage_info.get("completionTokens", 0),
|
259 |
-
}
|
260 |
})
|
261 |
except httpx.HTTPStatusError as e:
|
262 |
return JSONResponse(status_code=e.response.status_code, content={"error": {"message": f"Upstream API error. Details: {e.response.text}", "type": "upstream_error"}})
|
263 |
|
264 |
-
|
265 |
-
# === Image Generation ===
|
266 |
-
class ImageGenerationRequest(BaseModel):
|
267 |
-
prompt: str
|
268 |
-
aspect_ratio: Optional[str] = "1:1"
|
269 |
-
n: Optional[int] = 1
|
270 |
-
user: Optional[str] = None
|
271 |
-
model: Optional[str] = "default"
|
272 |
-
|
273 |
-
@app.post("/v1/images/generations")
|
274 |
async def generate_images(request: ImageGenerationRequest):
|
275 |
"""Handles image generation requests."""
|
276 |
results = []
|
@@ -281,20 +273,20 @@ async def generate_images(request: ImageGenerationRequest):
|
|
281 |
if model in ["gpt-image-1", "dall-e-3", "dall-e-2", "nextlm-image-1"]:
|
282 |
headers = {'Content-Type': 'application/json', 'User-Agent': 'Mozilla/5.0', 'Referer': 'https://www.chatwithmono.xyz/'}
|
283 |
payload = {"prompt": request.prompt, "model": model}
|
284 |
-
resp = await client.post(
|
285 |
resp.raise_for_status()
|
286 |
data = resp.json()
|
287 |
b64_image = data.get("image")
|
288 |
if not b64_image: return JSONResponse(status_code=502, content={"error": "Missing base64 image in response"})
|
|
|
|
|
289 |
if SNAPZION_API_KEY:
|
290 |
upload_headers = {"Authorization": SNAPZION_API_KEY}
|
291 |
upload_files = {'file': ('image.png', base64.b64decode(b64_image), 'image/png')}
|
292 |
upload_resp = await client.post(SNAPZION_UPLOAD_URL, headers=upload_headers, files=upload_files)
|
293 |
-
upload_resp.
|
294 |
-
|
295 |
-
|
296 |
-
else:
|
297 |
-
image_url = f"data:image/png;base64,{b64_image}"
|
298 |
results.append({"url": image_url, "b64_json": b64_image, "revised_prompt": data.get("revised_prompt")})
|
299 |
else:
|
300 |
params = {"prompt": request.prompt, "aspect_ratio": request.aspect_ratio, "link": "typegpt.net"}
|
@@ -308,74 +300,78 @@ async def generate_images(request: ImageGenerationRequest):
|
|
308 |
return JSONResponse(status_code=500, content={"error": "An internal error occurred.", "details": str(e)})
|
309 |
return {"created": int(time.time()), "data": results}
|
310 |
|
311 |
-
|
312 |
-
|
313 |
-
input: Union[str, List[str]]
|
314 |
-
model: Optional[str] = "text-moderation-stable"
|
315 |
-
|
316 |
-
@app.post("/v1/moderations")
|
317 |
-
async def create_moderation(request: ModerationRequest):
|
318 |
"""
|
319 |
-
|
320 |
-
|
321 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
input_texts = [request.input] if isinstance(request.input, str) else request.input
|
323 |
if not input_texts:
|
324 |
-
return JSONResponse(status_code=400, content={"error": {"message": "Request must have at least one input string."
|
325 |
-
|
326 |
-
headers = {
|
327 |
-
'Content-Type': 'application/json',
|
328 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0 Safari/537.36',
|
329 |
-
'Referer': 'https://www.chatwithmono.xyz/',
|
330 |
-
}
|
331 |
results = []
|
332 |
try:
|
333 |
async with httpx.AsyncClient(timeout=30) as client:
|
334 |
for text_input in input_texts:
|
335 |
-
|
336 |
-
resp = await client.post(moderation_url, headers=headers, json=payload)
|
337 |
resp.raise_for_status()
|
338 |
upstream_data = resp.json()
|
339 |
-
# --- Transform upstream response to OpenAI format ---
|
340 |
upstream_categories = upstream_data.get("categories", {})
|
341 |
openai_categories = {
|
342 |
-
"hate": upstream_categories.get("hate", False), "hate/threatening": False,
|
343 |
-
"harassment": False, "harassment/threatening": False,
|
344 |
"self-harm": upstream_categories.get("self-harm", False), "self-harm/intent": False, "self-harm/instructions": False,
|
345 |
"sexual": upstream_categories.get("sexual", False), "sexual/minors": False,
|
346 |
"violence": upstream_categories.get("violence", False), "violence/graphic": False,
|
347 |
}
|
348 |
-
category_scores = {k: 1.0 if v else 0.0 for k, v in openai_categories.items()}
|
349 |
-
flagged = upstream_data.get("overall_sentiment") == "flagged"
|
350 |
result_item = {
|
351 |
-
"flagged": flagged,
|
352 |
"categories": openai_categories,
|
353 |
-
"category_scores":
|
354 |
}
|
355 |
-
|
356 |
-
# --- NEW: Conditionally add the 'reason' field ---
|
357 |
-
# This is a custom extension to the OpenAI spec to provide more detail.
|
358 |
-
reason = upstream_data.get("reason")
|
359 |
-
if reason:
|
360 |
result_item["reason"] = reason
|
361 |
-
|
362 |
results.append(result_item)
|
363 |
except httpx.HTTPStatusError as e:
|
364 |
-
return JSONResponse(
|
365 |
-
status_code=502, # Bad Gateway
|
366 |
-
content={"error": {"message": f"Moderation failed. Upstream error: {e.response.status_code}", "type": "upstream_error", "details": e.response.text}}
|
367 |
-
)
|
368 |
except Exception as e:
|
369 |
-
return JSONResponse(status_code=500, content={"error": {"message": "An internal error occurred during moderation.", "
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
"model": request.model,
|
374 |
-
"results": results,
|
375 |
-
}
|
376 |
-
return JSONResponse(content=final_response)
|
377 |
|
378 |
# --- Main Execution ---
|
379 |
if __name__ == "__main__":
|
380 |
import uvicorn
|
381 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
4 |
import secrets
|
5 |
import string
|
6 |
import time
|
7 |
+
import tempfile
|
8 |
from typing import List, Optional, Union, Any
|
9 |
+
|
10 |
import httpx
|
11 |
from dotenv import load_dotenv
|
12 |
+
from fastapi import FastAPI, HTTPException
|
13 |
from fastapi.responses import JSONResponse, StreamingResponse
|
14 |
+
from pydantic import BaseModel, Field, model_validator
|
15 |
+
|
16 |
+
# New import for OCR
|
17 |
+
from gradio_client import Client, handle_file
|
18 |
|
19 |
# --- Configuration ---
|
20 |
load_dotenv()
|
21 |
+
|
22 |
# Env variables for external services
|
23 |
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
|
24 |
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
|
25 |
SNAPZION_API_KEY = os.environ.get("SNAP", "")
|
26 |
+
CHAT_API_URL = "https://www.chatwithmono.xyz/api/chat"
|
27 |
+
IMAGE_GEN_API_URL = "https://www.chatwithmono.xyz/api/image"
|
28 |
+
MODERATION_API_URL = "https://www.chatwithmono.xyz/api/moderation"
|
29 |
|
30 |
+
# --- Model Definitions ---
|
31 |
+
# Added florence-2-ocr for the new endpoint
|
32 |
AVAILABLE_MODELS = [
|
33 |
{"id": "gpt-4-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
34 |
{"id": "gpt-4o", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
35 |
{"id": "gpt-3.5-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
36 |
{"id": "dall-e-3", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
37 |
{"id": "text-moderation-stable", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
38 |
+
{"id": "florence-2-ocr", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
39 |
]
|
40 |
MODEL_ALIASES = {}
|
41 |
|
42 |
+
# --- FastAPI Application & Global Clients ---
|
43 |
app = FastAPI(
|
44 |
title="OpenAI Compatible API",
|
45 |
description="An adapter for various services to be compatible with the OpenAI API specification.",
|
46 |
+
version="1.1.0"
|
47 |
)
|
48 |
|
49 |
+
# Initialize Gradio client for OCR globally to avoid re-initialization on each request
|
50 |
+
try:
|
51 |
+
ocr_client = Client("multimodalart/Florence-2-l4")
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Warning: Could not initialize Gradio client for OCR: {e}")
|
54 |
+
ocr_client = None
|
|
|
|
|
55 |
|
56 |
+
# --- Pydantic Models ---
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# /v1/chat/completions
|
59 |
class Message(BaseModel):
|
60 |
role: str
|
61 |
content: str
|
|
|
66 |
stream: Optional[bool] = False
|
67 |
tools: Optional[Any] = None
|
68 |
|
69 |
+
# /v1/images/generations
|
70 |
+
class ImageGenerationRequest(BaseModel):
|
71 |
+
prompt: str
|
72 |
+
aspect_ratio: Optional[str] = "1:1"
|
73 |
+
n: Optional[int] = 1
|
74 |
+
user: Optional[str] = None
|
75 |
+
model: Optional[str] = "default"
|
76 |
+
|
77 |
+
# /v1/moderations
|
78 |
+
class ModerationRequest(BaseModel):
|
79 |
+
input: Union[str, List[str]]
|
80 |
+
model: Optional[str] = "text-moderation-stable"
|
81 |
+
|
82 |
+
# /v1/ocr
|
83 |
+
class OcrRequest(BaseModel):
|
84 |
+
image_url: Optional[str] = Field(None, description="URL of the image to process.")
|
85 |
+
image_b64: Optional[str] = Field(None, description="Base64 encoded string of the image to process.")
|
86 |
+
|
87 |
+
@model_validator(mode='before')
|
88 |
+
@classmethod
|
89 |
+
def check_sources(cls, data: Any) -> Any:
|
90 |
+
if isinstance(data, dict):
|
91 |
+
url = data.get('image_url')
|
92 |
+
b64 = data.get('image_b64')
|
93 |
+
if not (url or b64):
|
94 |
+
raise ValueError('Either image_url or image_b64 must be provided.')
|
95 |
+
if url and b64:
|
96 |
+
raise ValueError('Provide either image_url or image_b64, not both.')
|
97 |
+
return data
|
98 |
+
|
99 |
+
class OcrResponse(BaseModel):
|
100 |
+
ocr_text: str
|
101 |
+
raw_response: dict
|
102 |
+
|
103 |
+
|
104 |
+
# --- Helper Function for Random ID Generation ---
|
105 |
+
def generate_random_id(prefix: str, length: int = 29) -> str:
|
106 |
+
"""Generates a cryptographically secure, random alphanumeric ID."""
|
107 |
+
population = string.ascii_letters + string.digits
|
108 |
+
random_part = "".join(secrets.choice(population) for _ in range(length))
|
109 |
+
return f"{prefix}{random_part}"
|
110 |
+
|
111 |
+
# === API Endpoints ===
|
112 |
+
|
113 |
+
@app.get("/v1/models", tags=["Models"])
|
114 |
+
async def list_models():
|
115 |
+
"""Lists the available models."""
|
116 |
+
return {"object": "list", "data": AVAILABLE_MODELS}
|
117 |
+
|
118 |
+
@app.post("/v1/chat/completions", tags=["Chat"])
|
119 |
async def chat_completion(request: ChatRequest):
|
120 |
+
"""Handles chat completion requests, supporting streaming and non-streaming."""
|
|
|
|
|
121 |
model_id = MODEL_ALIASES.get(request.model, request.model)
|
122 |
chat_id = generate_random_id("chatcmpl-")
|
123 |
headers = {
|
|
|
127 |
'referer': 'https://www.chatwithmono.xyz/',
|
128 |
'user-agent': 'Mozilla/5.0',
|
129 |
}
|
130 |
+
|
131 |
+
# Handle tool prompting
|
132 |
if request.tools:
|
133 |
+
tool_prompt = f"""You have access to the following tools. To call a tool, please respond with JSON for a tool call within <tool_call></tool_call> XML tags. Respond in the format {{"name": tool name, "parameters": dictionary of argument name and its value}}. Do not use variables.
|
134 |
+
Tools: {";".join(f"<tool>{tool}</tool>" for tool in request.tools)}
|
|
|
|
|
|
|
|
|
135 |
Response Format for tool call:
|
|
|
136 |
<tool_call>
|
137 |
{{"name": <function-name>, "arguments": <args-json-object>}}
|
138 |
+
</tool_call>"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
if request.messages[0].role == "system":
|
140 |
request.messages[0].content += "\n\n" + tool_prompt
|
141 |
else:
|
142 |
+
request.messages.insert(0, Message(role="system", content=tool_prompt))
|
143 |
+
|
144 |
+
payload = {"messages": [msg.model_dump() for msg in request.messages], "model": model_id}
|
145 |
|
|
|
|
|
|
|
|
|
146 |
if request.stream:
|
147 |
async def event_stream():
|
148 |
created = int(time.time())
|
|
|
149 |
usage_info = None
|
150 |
+
is_first_chunk = True
|
151 |
+
tool_call_buffer = ""
|
152 |
+
in_tool_call = False
|
153 |
+
|
154 |
try:
|
155 |
async with httpx.AsyncClient(timeout=120) as client:
|
156 |
+
async with client.stream("POST", CHAT_API_URL, headers=headers, json=payload) as response:
|
157 |
response.raise_for_status()
|
158 |
async for line in response.aiter_lines():
|
159 |
if not line: continue
|
160 |
if line.startswith("0:"):
|
161 |
try:
|
162 |
content_piece = json.loads(line[2:])
|
163 |
+
except json.JSONDecodeError:
|
164 |
+
continue
|
165 |
+
|
166 |
+
current_buffer = content_piece
|
167 |
+
if in_tool_call:
|
168 |
+
current_buffer = tool_call_buffer + content_piece
|
169 |
+
|
170 |
+
if "</tool_call>" in current_buffer:
|
171 |
+
tool_str = current_buffer.split("<tool_call>")[1].split("</tool_call>")[0]
|
172 |
+
tool_json = json.loads(tool_str.strip())
|
173 |
+
delta = {
|
174 |
+
"content": None,
|
175 |
+
"tool_calls": [{"index": 0, "id": generate_random_id("call_"), "type": "function",
|
176 |
+
"function": {"name": tool_json["name"], "arguments": json.dumps(tool_json["parameters"])}}]
|
177 |
+
}
|
178 |
+
chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
|
179 |
+
"choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
|
180 |
+
yield f"data: {json.dumps(chunk)}\n\n"
|
181 |
+
|
182 |
+
in_tool_call = False
|
183 |
+
tool_call_buffer = ""
|
184 |
+
# Process text that might come after the tool call in the same chunk
|
185 |
+
remaining_text = current_buffer.split("</tool_call>", 1)[1]
|
186 |
+
if remaining_text:
|
187 |
+
content_piece = remaining_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
else:
|
189 |
+
continue
|
190 |
+
|
191 |
+
if "<tool_call>" in content_piece:
|
192 |
+
in_tool_call = True
|
193 |
+
tool_call_buffer += content_piece.split("<tool_call>", 1)[1]
|
194 |
+
# Process text that came before the tool call
|
195 |
+
text_before = content_piece.split("<tool_call>", 1)[0]
|
196 |
+
if text_before:
|
197 |
+
# Send the text before the tool call starts
|
198 |
+
delta = {"content": text_before, "tool_calls": None}
|
199 |
+
chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
|
200 |
+
"choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
|
201 |
+
yield f"data: {json.dumps(chunk)}\n\n"
|
202 |
+
if "</tool_call>" not in tool_call_buffer:
|
203 |
+
continue # Wait for the closing tag
|
204 |
+
|
205 |
+
if not in_tool_call:
|
206 |
+
delta = {"content": content_piece}
|
207 |
+
if is_first_chunk:
|
208 |
+
delta["role"] = "assistant"
|
209 |
+
is_first_chunk = False
|
210 |
+
chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
|
211 |
+
"choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
|
212 |
+
yield f"data: {json.dumps(chunk)}\n\n"
|
213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
elif line.startswith(("e:", "d:")):
|
215 |
try:
|
216 |
usage_info = json.loads(line[2:]).get("usage")
|
217 |
except (json.JSONDecodeError, AttributeError): pass
|
218 |
break
|
219 |
+
|
220 |
+
# Finalize
|
221 |
final_usage = None
|
222 |
if usage_info:
|
223 |
+
final_usage = {"prompt_tokens": usage_info.get("promptTokens", 0), "completion_tokens": usage_info.get("completionTokens", 0), "total_tokens": usage_info.get("promptTokens", 0) + usage_info.get("completionTokens", 0)}
|
224 |
+
done_chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
|
225 |
+
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop" if not in_tool_call else "tool_calls"}], "usage": final_usage}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
yield f"data: {json.dumps(done_chunk)}\n\n"
|
227 |
+
|
228 |
except httpx.HTTPStatusError as e:
|
229 |
+
error_content = {"error": {"message": f"Upstream API error: {e.response.status_code}. Details: {e.response.text}", "type": "upstream_error", "code": str(e.response.status_code)}}
|
|
|
|
|
|
|
|
|
|
|
230 |
yield f"data: {json.dumps(error_content)}\n\n"
|
231 |
finally:
|
232 |
yield "data: [DONE]\n\n"
|
233 |
+
|
234 |
return StreamingResponse(event_stream(), media_type="text/event-stream")
|
235 |
else: # Non-streaming
|
236 |
+
full_response, usage_info = "", {}
|
|
|
237 |
try:
|
238 |
async with httpx.AsyncClient(timeout=120) as client:
|
239 |
+
async with client.stream("POST", CHAT_API_URL, headers=headers, json=payload) as response:
|
240 |
response.raise_for_status()
|
241 |
async for chunk in response.aiter_lines():
|
242 |
if chunk.startswith("0:"):
|
243 |
+
try: full_response += json.loads(chunk[2:])
|
244 |
except: continue
|
245 |
elif chunk.startswith(("e:", "d:")):
|
246 |
try: usage_info = json.loads(chunk[2:]).get("usage", {})
|
247 |
except: continue
|
248 |
|
249 |
+
tool_calls = None
|
250 |
+
content_response = full_response
|
251 |
+
if "<tool_call>" in full_response and "</tool_call>" in full_response:
|
252 |
+
tool_call_str = full_response.split("<tool_call>")[1].split("</tool_call>")[0]
|
253 |
tool_call = json.loads(tool_call_str.strip())
|
254 |
+
tool_calls = [{"id": generate_random_id("call_"), "type": "function", "function": {"name": tool_call["name"], "arguments": json.dumps(tool_call["parameters"])}}]
|
255 |
+
content_response = None
|
256 |
+
|
|
|
257 |
return JSONResponse(content={
|
258 |
"id": chat_id, "object": "chat.completion", "created": int(time.time()), "model": model_id,
|
259 |
+
"choices": [{"index": 0, "message": {"role": "assistant", "content": content_response, "tool_calls": tool_calls}, "finish_reason": "stop" if not tool_calls else "tool_calls"}],
|
260 |
+
"usage": {"prompt_tokens": usage_info.get("promptTokens", 0), "completion_tokens": usage_info.get("completionTokens", 0), "total_tokens": usage_info.get("promptTokens", 0) + usage_info.get("completionTokens", 0)}
|
|
|
|
|
|
|
|
|
261 |
})
|
262 |
except httpx.HTTPStatusError as e:
|
263 |
return JSONResponse(status_code=e.response.status_code, content={"error": {"message": f"Upstream API error. Details: {e.response.text}", "type": "upstream_error"}})
|
264 |
|
265 |
+
@app.post("/v1/images/generations", tags=["Images"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
async def generate_images(request: ImageGenerationRequest):
|
267 |
"""Handles image generation requests."""
|
268 |
results = []
|
|
|
273 |
if model in ["gpt-image-1", "dall-e-3", "dall-e-2", "nextlm-image-1"]:
|
274 |
headers = {'Content-Type': 'application/json', 'User-Agent': 'Mozilla/5.0', 'Referer': 'https://www.chatwithmono.xyz/'}
|
275 |
payload = {"prompt": request.prompt, "model": model}
|
276 |
+
resp = await client.post(IMAGE_GEN_API_URL, headers=headers, json=payload)
|
277 |
resp.raise_for_status()
|
278 |
data = resp.json()
|
279 |
b64_image = data.get("image")
|
280 |
if not b64_image: return JSONResponse(status_code=502, content={"error": "Missing base64 image in response"})
|
281 |
+
|
282 |
+
image_url = f"data:image/png;base64,{b64_image}"
|
283 |
if SNAPZION_API_KEY:
|
284 |
upload_headers = {"Authorization": SNAPZION_API_KEY}
|
285 |
upload_files = {'file': ('image.png', base64.b64decode(b64_image), 'image/png')}
|
286 |
upload_resp = await client.post(SNAPZION_UPLOAD_URL, headers=upload_headers, files=upload_files)
|
287 |
+
if upload_resp.status_code == 200:
|
288 |
+
image_url = upload_resp.json().get("url", image_url)
|
289 |
+
|
|
|
|
|
290 |
results.append({"url": image_url, "b64_json": b64_image, "revised_prompt": data.get("revised_prompt")})
|
291 |
else:
|
292 |
params = {"prompt": request.prompt, "aspect_ratio": request.aspect_ratio, "link": "typegpt.net"}
|
|
|
300 |
return JSONResponse(status_code=500, content={"error": "An internal error occurred.", "details": str(e)})
|
301 |
return {"created": int(time.time()), "data": results}
|
302 |
|
303 |
+
@app.post("/v1/ocr", response_model=OcrResponse, tags=["OCR"])
|
304 |
+
async def perform_ocr(request: OcrRequest):
|
|
|
|
|
|
|
|
|
|
|
305 |
"""
|
306 |
+
Performs Optical Character Recognition (OCR) on an image using the Florence-2 model.
|
307 |
+
Provide an image via a URL or a base64 encoded string.
|
308 |
"""
|
309 |
+
if not ocr_client:
|
310 |
+
raise HTTPException(status_code=503, detail="OCR service is not available. Gradio client failed to initialize.")
|
311 |
+
|
312 |
+
image_path, temp_file_path = None, None
|
313 |
+
try:
|
314 |
+
if request.image_url:
|
315 |
+
image_path = request.image_url
|
316 |
+
elif request.image_b64:
|
317 |
+
image_bytes = base64.b64decode(request.image_b64)
|
318 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
319 |
+
temp_file.write(image_bytes)
|
320 |
+
temp_file_path = temp_file.name
|
321 |
+
image_path = temp_file_path
|
322 |
+
|
323 |
+
prediction = ocr_client.predict(image=handle_file(image_path), task_prompt="OCR", api_name="/process_image")
|
324 |
+
|
325 |
+
if not prediction or not isinstance(prediction, tuple):
|
326 |
+
raise HTTPException(status_code=502, detail="Invalid response from OCR service.")
|
327 |
+
|
328 |
+
raw_result = prediction[0]
|
329 |
+
ocr_text = raw_result.get("OCR", "")
|
330 |
+
return OcrResponse(ocr_text=ocr_text, raw_response=raw_result)
|
331 |
+
except Exception as e:
|
332 |
+
raise HTTPException(status_code=500, detail=f"An error occurred during OCR processing: {str(e)}")
|
333 |
+
finally:
|
334 |
+
if temp_file_path:
|
335 |
+
os.unlink(temp_file_path)
|
336 |
+
|
337 |
+
@app.post("/v1/moderations", tags=["Moderation"])
|
338 |
+
async def create_moderation(request: ModerationRequest):
|
339 |
+
"""Handles moderation requests, conforming to the OpenAI API specification."""
|
340 |
input_texts = [request.input] if isinstance(request.input, str) else request.input
|
341 |
if not input_texts:
|
342 |
+
return JSONResponse(status_code=400, content={"error": {"message": "Request must have at least one input string."}})
|
343 |
+
headers = {'Content-Type': 'application/json', 'User-Agent': 'Mozilla/5.0', 'Referer': 'https://www.chatwithmono.xyz/'}
|
|
|
|
|
|
|
|
|
|
|
344 |
results = []
|
345 |
try:
|
346 |
async with httpx.AsyncClient(timeout=30) as client:
|
347 |
for text_input in input_texts:
|
348 |
+
resp = await client.post(MODERATION_API_URL, headers=headers, json={"text": text_input})
|
|
|
349 |
resp.raise_for_status()
|
350 |
upstream_data = resp.json()
|
|
|
351 |
upstream_categories = upstream_data.get("categories", {})
|
352 |
openai_categories = {
|
353 |
+
"hate": upstream_categories.get("hate", False), "hate/threatening": False, "harassment": False, "harassment/threatening": False,
|
|
|
354 |
"self-harm": upstream_categories.get("self-harm", False), "self-harm/intent": False, "self-harm/instructions": False,
|
355 |
"sexual": upstream_categories.get("sexual", False), "sexual/minors": False,
|
356 |
"violence": upstream_categories.get("violence", False), "violence/graphic": False,
|
357 |
}
|
|
|
|
|
358 |
result_item = {
|
359 |
+
"flagged": upstream_data.get("overall_sentiment") == "flagged",
|
360 |
"categories": openai_categories,
|
361 |
+
"category_scores": {k: 1.0 if v else 0.0 for k, v in openai_categories.items()},
|
362 |
}
|
363 |
+
if reason := upstream_data.get("reason"):
|
|
|
|
|
|
|
|
|
364 |
result_item["reason"] = reason
|
|
|
365 |
results.append(result_item)
|
366 |
except httpx.HTTPStatusError as e:
|
367 |
+
return JSONResponse(status_code=502, content={"error": {"message": f"Moderation failed. Upstream error: {e.response.status_code}", "details": e.response.text}})
|
|
|
|
|
|
|
368 |
except Exception as e:
|
369 |
+
return JSONResponse(status_code=500, content={"error": {"message": "An internal error occurred during moderation.", "details": str(e)}})
|
370 |
+
|
371 |
+
return JSONResponse(content={"id": generate_random_id("modr-"), "model": request.model, "results": results})
|
372 |
+
|
|
|
|
|
|
|
|
|
373 |
|
374 |
# --- Main Execution ---
|
375 |
if __name__ == "__main__":
|
376 |
import uvicorn
|
377 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|