Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import json | |
| import os | |
| import pandas as pd | |
| from src.display.formatting import has_no_nan_values, make_clickable_model | |
| from src.display.utils import AutoEvalColumnQA, AutoEvalColumnLongDoc, EvalQueueColumn | |
| from src.leaderboard.read_evals import get_raw_eval_results, EvalResult, FullEvalResult | |
| from typing import Tuple, List | |
| def get_leaderboard_df(raw_data: List[FullEvalResult], cols: list, benchmark_cols: list, task: str, metric: str) -> pd.DataFrame: | |
| """Creates a dataframe from all the individual experiment results""" | |
| all_data_json = [] | |
| for v in raw_data: | |
| all_data_json += v.to_dict(task=task, metric=metric) | |
| df = pd.DataFrame.from_records(all_data_json) | |
| print(f'dataframe created: {df.shape}') | |
| # calculate the average score for selected benchmarks | |
| _benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list())) | |
| if task == 'qa': | |
| df[AutoEvalColumnQA.average.name] = df[list(_benchmark_cols)].mean(axis=1).round(decimals=2) | |
| df = df.sort_values(by=[AutoEvalColumnQA.average.name], ascending=False) | |
| elif task == "long_doc": | |
| df[AutoEvalColumnLongDoc.average.name] = df[list(_benchmark_cols)].mean(axis=1).round(decimals=2) | |
| df = df.sort_values(by=[AutoEvalColumnLongDoc.average.name], ascending=False) | |
| df.reset_index(inplace=True) | |
| _cols = frozenset(cols).intersection(frozenset(df.columns.to_list())) | |
| df = df[_cols].round(decimals=2) | |
| # filter out if any of the benchmarks have not been produced | |
| df = df[has_no_nan_values(df, _benchmark_cols)] | |
| return df | |
| def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: | |
| """Creates the different dataframes for the evaluation queues requests""" | |
| # entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | |
| # all_evals = [] | |
| # | |
| # for entry in entries: | |
| # if ".json" in entry: | |
| # file_path = os.path.join(save_path, entry) | |
| # with open(file_path) as fp: | |
| # data = json.load(fp) | |
| # | |
| # data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
| # data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
| # | |
| # all_evals.append(data) | |
| # elif ".md" not in entry: | |
| # # this is a folder | |
| # sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] | |
| # for sub_entry in sub_entries: | |
| # file_path = os.path.join(save_path, entry, sub_entry) | |
| # with open(file_path) as fp: | |
| # data = json.load(fp) | |
| # | |
| # data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
| # data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
| # all_evals.append(data) | |
| # | |
| # pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
| # running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
| # finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
| # df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
| # df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
| # df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
| cols = ["Retrieval Model", "Submitted Time", "Status"] | |
| df_finished = pd.DataFrame( | |
| { | |
| "Retrieval Model": ["bge-m3", "jina-embeddings-v2"], | |
| "Submitted Time": ["2024-05-01 12:34:20", "2024-05-02 12:34:20"], | |
| "Status": ["FINISHED", "FINISHED"] | |
| } | |
| ) | |
| df_running = pd.DataFrame( | |
| { | |
| "Retrieval Model": ["bge-m3", "jina-embeddings-v2"], | |
| "Submitted Time": ["2024-05-01 12:34:20", "2024-05-02 12:34:20"], | |
| "Status": ["RUNNING", "RUNNING"] | |
| } | |
| ) | |
| df_pending = pd.DataFrame( | |
| { | |
| "Retrieval Model": ["bge-m3", "jina-embeddings-v2"], | |
| "Submitted Time": ["2024-05-01 12:34:20", "2024-05-02 12:34:20"], | |
| "Status": ["PENDING", "PENDING"] | |
| } | |
| ) | |
| return df_finished, df_running, df_pending | |