Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import pandas as pd | |
| import pytest | |
| from src.utils import filter_models, search_table, filter_queries, select_columns, update_table_long_doc, get_iso_format_timestamp, get_default_cols, update_table | |
| from src.display.utils import COL_NAME_IS_ANONYMOUS, COL_NAME_REVISION, COL_NAME_TIMESTAMP, COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL, COL_NAME_RANK, COL_NAME_AVG | |
| def toy_df(): | |
| return pd.DataFrame( | |
| { | |
| "Retrieval Model": [ | |
| "bge-m3", | |
| "bge-m3", | |
| "jina-embeddings-v2-base", | |
| "jina-embeddings-v2-base" | |
| ], | |
| "Reranking Model": [ | |
| "bge-reranker-v2-m3", | |
| "NoReranker", | |
| "bge-reranker-v2-m3", | |
| "NoReranker" | |
| ], | |
| "Average ⬆️": [0.6, 0.4, 0.3, 0.2], | |
| "wiki_en": [0.8, 0.7, 0.2, 0.1], | |
| "wiki_zh": [0.4, 0.1, 0.4, 0.3], | |
| "news_en": [0.8, 0.7, 0.2, 0.1], | |
| "news_zh": [0.4, 0.1, 0.4, 0.3], | |
| } | |
| ) | |
| def toy_df_long_doc(): | |
| return pd.DataFrame( | |
| { | |
| "Retrieval Model": [ | |
| "bge-m3", | |
| "bge-m3", | |
| "jina-embeddings-v2-base", | |
| "jina-embeddings-v2-base" | |
| ], | |
| "Reranking Model": [ | |
| "bge-reranker-v2-m3", | |
| "NoReranker", | |
| "bge-reranker-v2-m3", | |
| "NoReranker" | |
| ], | |
| "Average ⬆️": [0.6, 0.4, 0.3, 0.2], | |
| "law_en_lex_files_300k_400k": [0.4, 0.1, 0.4, 0.3], | |
| "law_en_lex_files_400k_500k": [0.8, 0.7, 0.2, 0.1], | |
| "law_en_lex_files_500k_600k": [0.8, 0.7, 0.2, 0.1], | |
| "law_en_lex_files_600k_700k": [0.4, 0.1, 0.4, 0.3], | |
| } | |
| ) | |
| def test_filter_models(toy_df): | |
| df_result = filter_models(toy_df, ["bge-reranker-v2-m3", ]) | |
| assert len(df_result) == 2 | |
| assert df_result.iloc[0]["Reranking Model"] == "bge-reranker-v2-m3" | |
| def test_search_table(toy_df): | |
| df_result = search_table(toy_df, "jina") | |
| assert len(df_result) == 2 | |
| assert df_result.iloc[0]["Retrieval Model"] == "jina-embeddings-v2-base" | |
| def test_filter_queries(toy_df): | |
| df_result = filter_queries("jina", toy_df) | |
| assert len(df_result) == 2 | |
| assert df_result.iloc[0]["Retrieval Model"] == "jina-embeddings-v2-base" | |
| def test_select_columns(toy_df): | |
| df_result = select_columns(toy_df, ['news',], ['zh',]) | |
| assert len(df_result.columns) == 4 | |
| assert df_result['Average ⬆️'].equals(df_result['news_zh']) | |
| def test_update_table_long_doc(toy_df_long_doc): | |
| df_result = update_table_long_doc(toy_df_long_doc, ['law',], ['en',], ["bge-reranker-v2-m3", ], "jina") | |
| print(df_result) | |
| def test_get_iso_format_timestamp(): | |
| timestamp_config, timestamp_fn = get_iso_format_timestamp() | |
| assert len(timestamp_fn) == 14 | |
| assert len(timestamp_config) == 20 | |
| assert timestamp_config[-1] == "Z" | |
| def test_get_default_cols(): | |
| cols, types = get_default_cols("qa") | |
| for c, t in zip(cols, types): | |
| print(f"type({c}): {t}") | |
| assert len(frozenset(cols)) == len(cols) | |
| def test_update_table(): | |
| df = pd.DataFrame( | |
| { | |
| COL_NAME_IS_ANONYMOUS: [False, False, False], | |
| COL_NAME_REVISION: ["a1", "a2", "a3"], | |
| COL_NAME_TIMESTAMP: ["2024-05-12T12:24:02Z"] * 3, | |
| COL_NAME_RERANKING_MODEL: ["NoReranker"] * 3, | |
| COL_NAME_RETRIEVAL_MODEL: ["Foo"] * 3, | |
| COL_NAME_RANK: [1, 2, 3], | |
| COL_NAME_AVG: [0.1, 0.2, 0.3], # unsorted values | |
| "wiki_en": [0.1, 0.2, 0.3] | |
| } | |
| ) | |
| results = update_table(df, "wiki", "en", ["NoReranker"], "", show_anonymous=False, reset_ranking=False, show_revision_and_timestamp=False) | |
| # keep the RANK as the same regardless of the unsorted averages | |
| assert results[COL_NAME_RANK].to_list() == [1, 2, 3] | |