Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import os.path | |
| from typing import List | |
| import pandas as pd | |
| from src.benchmarks import DEFAULT_METRIC_QA, DEFAULT_METRIC_LONG_DOC | |
| from src.display.columns import COL_NAME_REVISION, COL_NAME_TIMESTAMP, COL_NAME_IS_ANONYMOUS | |
| from src.models import FullEvalResult, LeaderboardDataStore | |
| from src.utils import get_default_cols, get_leaderboard_df | |
| pd.options.mode.copy_on_write = True | |
| def load_raw_eval_results(results_path: str) -> List[FullEvalResult]: | |
| """ | |
| Load the evaluation results from a json file | |
| """ | |
| model_result_filepaths = [] | |
| for root, dirs, files in os.walk(results_path): | |
| if len(files) == 0: | |
| continue | |
| # select the latest results | |
| for file in files: | |
| if not (file.startswith("results") and file.endswith(".json")): | |
| print(f'skip {file}') | |
| continue | |
| model_result_filepaths.append(os.path.join(root, file)) | |
| eval_results = {} | |
| for model_result_filepath in model_result_filepaths: | |
| # create evaluation results | |
| try: | |
| eval_result = FullEvalResult.init_from_json_file(model_result_filepath) | |
| except UnicodeDecodeError as e: | |
| print(f"loading file failed. {model_result_filepath}") | |
| continue | |
| print(f'file loaded: {model_result_filepath}') | |
| timestamp = eval_result.timestamp | |
| eval_results[timestamp] = eval_result | |
| results = [] | |
| for k, v in eval_results.items(): | |
| try: | |
| v.to_dict() | |
| results.append(v) | |
| except KeyError: | |
| print(f"loading failed: {k}") | |
| continue | |
| return results | |
| def load_leaderboard_datastore(file_path) -> LeaderboardDataStore: | |
| lb_data_store = LeaderboardDataStore(None, None, None, None, None, None, None, None) | |
| lb_data_store.raw_data = load_raw_eval_results(file_path) | |
| print(f'raw data: {len(lb_data_store.raw_data)}') | |
| lb_data_store.raw_df_qa = get_leaderboard_df( | |
| lb_data_store.raw_data, task='qa', metric=DEFAULT_METRIC_QA) | |
| lb_data_store.leaderboard_df_qa = lb_data_store.raw_df_qa.copy() | |
| # leaderboard_df_qa = leaderboard_df_qa[has_no_nan_values(df, _benchmark_cols)] | |
| print(f'QA data loaded: {lb_data_store.raw_df_qa.shape}') | |
| shown_columns_qa, types_qa = get_default_cols( | |
| 'qa', lb_data_store.leaderboard_df_qa.columns, add_fix_cols=True) | |
| lb_data_store.types_qa = types_qa | |
| lb_data_store.leaderboard_df_qa = \ | |
| lb_data_store.leaderboard_df_qa[~lb_data_store.leaderboard_df_qa[COL_NAME_IS_ANONYMOUS]][shown_columns_qa] | |
| lb_data_store.leaderboard_df_qa.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True) | |
| lb_data_store.raw_df_long_doc = get_leaderboard_df( | |
| lb_data_store.raw_data, task='long-doc', metric=DEFAULT_METRIC_LONG_DOC) | |
| print(f'Long-Doc data loaded: {len(lb_data_store.raw_df_long_doc)}') | |
| lb_data_store.leaderboard_df_long_doc = lb_data_store.raw_df_long_doc.copy() | |
| shown_columns_long_doc, types_long_doc = get_default_cols( | |
| 'long-doc', lb_data_store.leaderboard_df_long_doc.columns, add_fix_cols=True) | |
| lb_data_store.types_long_doc = types_long_doc | |
| lb_data_store.leaderboard_df_long_doc = \ | |
| lb_data_store.leaderboard_df_long_doc[~lb_data_store.leaderboard_df_long_doc[COL_NAME_IS_ANONYMOUS]][ | |
| shown_columns_long_doc] | |
| lb_data_store.leaderboard_df_long_doc.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True) | |
| lb_data_store.reranking_models = sorted( | |
| list(frozenset([eval_result.reranking_model for eval_result in lb_data_store.raw_data]))) | |
| return lb_data_store | |
| def load_eval_results(file_path: str): | |
| output = {} | |
| versions = ("AIR-Bench_24.04",) | |
| for version in versions: | |
| fn = f"{file_path}/{version}" | |
| output[version] = load_leaderboard_datastore(fn) | |
| return output | |