Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| from dataclasses import dataclass, make_dataclass | |
| def _fields(raw_class): | |
| return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
| # These classes are for user facing column names, | |
| # to avoid having to change them all around the code | |
| # when a modification is needed | |
| class ColumnContent: | |
| name: str | |
| type: str | |
| displayed_by_default: bool | |
| hidden: bool = False | |
| never_hidden: bool = False | |
| def get_default_auto_eval_column_dict(): | |
| auto_eval_column_dict = [] | |
| auto_eval_column_dict.append(["rank", ColumnContent, ColumnContent(COL_NAME_RANK, "number", True)]) | |
| auto_eval_column_dict.append( | |
| [ | |
| "retrieval_model", | |
| ColumnContent, | |
| ColumnContent(COL_NAME_RETRIEVAL_MODEL, "markdown", True, never_hidden=True), | |
| ] | |
| ) | |
| auto_eval_column_dict.append( | |
| [ | |
| "reranking_model", | |
| ColumnContent, | |
| ColumnContent(COL_NAME_RERANKING_MODEL, "markdown", True, never_hidden=True), | |
| ] | |
| ) | |
| auto_eval_column_dict.append( | |
| ["revision", ColumnContent, ColumnContent(COL_NAME_REVISION, "markdown", True, never_hidden=True)] | |
| ) | |
| auto_eval_column_dict.append( | |
| ["timestamp", ColumnContent, ColumnContent(COL_NAME_TIMESTAMP, "date", True, never_hidden=True)] | |
| ) | |
| auto_eval_column_dict.append(["average", ColumnContent, ColumnContent(COL_NAME_AVG, "number", True)]) | |
| auto_eval_column_dict.append( | |
| [ | |
| "retrieval_model_link", | |
| ColumnContent, | |
| ColumnContent( | |
| COL_NAME_RETRIEVAL_MODEL_LINK, | |
| "markdown", | |
| False, | |
| hidden=True, | |
| ), | |
| ] | |
| ) | |
| auto_eval_column_dict.append( | |
| [ | |
| "reranking_model_link", | |
| ColumnContent, | |
| ColumnContent( | |
| COL_NAME_RERANKING_MODEL_LINK, | |
| "markdown", | |
| False, | |
| hidden=True, | |
| ), | |
| ] | |
| ) | |
| auto_eval_column_dict.append( | |
| ["is_anonymous", ColumnContent, ColumnContent(COL_NAME_IS_ANONYMOUS, "bool", False, hidden=True)] | |
| ) | |
| return auto_eval_column_dict | |
| def make_autoevalcolumn(cls_name, benchmarks): | |
| auto_eval_column_dict = get_default_auto_eval_column_dict() | |
| # Leaderboard columns | |
| for benchmark in list(benchmarks.value): | |
| auto_eval_column_dict.append( | |
| [benchmark.name, ColumnContent, ColumnContent(benchmark.value.col_name, "number", True)] | |
| ) | |
| # We use make dataclass to dynamically fill the scores from Tasks | |
| return make_dataclass(cls_name, auto_eval_column_dict, frozen=True) | |
| def get_default_col_names_and_types(benchmarks): | |
| AutoEvalColumn = make_autoevalcolumn("AutoEvalColumn", benchmarks) | |
| col_names = [c.name for c in _fields(AutoEvalColumn) if not c.hidden] | |
| col_types = [c.type for c in _fields(AutoEvalColumn) if not c.hidden] | |
| return col_names, col_types | |
| def get_fixed_col_names_and_types(): | |
| fixed_cols = get_default_auto_eval_column_dict()[:-3] | |
| return [c.name for _, _, c in fixed_cols], [c.type for _, _, c in fixed_cols] | |
| COL_NAME_AVG = "Average ⬆️" | |
| COL_NAME_RETRIEVAL_MODEL = "Retrieval Method" | |
| COL_NAME_RERANKING_MODEL = "Reranking Model" | |
| COL_NAME_RETRIEVAL_MODEL_LINK = "Retrieval Model LINK" | |
| COL_NAME_RERANKING_MODEL_LINK = "Reranking Model LINK" | |
| COL_NAME_RANK = "Rank 🏆" | |
| COL_NAME_REVISION = "Revision" | |
| COL_NAME_TIMESTAMP = "Submission Date" | |
| COL_NAME_IS_ANONYMOUS = "Anonymous Submission" | |