Youtube_Anal_v1 / app.py
AIRider's picture
Update app.py
2c9a4af verified
raw
history blame
6.59 kB
import gradio as gr
import pandas as pd
from googleapiclient.discovery import build
import plotly.express as px
import base64
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from datetime import datetime, timedelta
import os
from huggingface_hub import InferenceApi # Hugging Face Hub API ์‚ฌ์šฉ
# ์—ฌ๊ธฐ์— YouTube API ํ‚ค๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”
YOUTUBE_API_KEY = "AIzaSyDNZX0U6XNmKRj-Lu6ghc2E2Q1KVmkK4ps"
def create_client(model_name):
token = os.getenv("HF_TOKEN")
return InferenceApi(repo_id=model_name, token=token)
client = create_client("CohereForAI/c4ai-command-r-plus")
def get_video_stats(video_id):
youtube = build("youtube", "v3", developerKey=YOUTUBE_API_KEY)
video_response = youtube.videos().list(
part="snippet,statistics",
id=video_id
).execute()
video = video_response["items"][0]
title = video["snippet"]["title"]
channel_id = video["snippet"]["channelId"]
publish_time = video["snippet"]["publishedAt"]
view_count = int(video["statistics"].get("viewCount", 0))
like_count = int(video["statistics"].get("likeCount", 0))
comment_count = int(video["statistics"].get("commentCount", 0))
return {
"Video ID": video_id,
"Title": title,
"publishedAt": publish_time,
"Channel ID": channel_id,
"View Count": view_count,
"Like Count": like_count,
"Comment Count": comment_count
}
def get_channel_stats(channel_id):
youtube = build("youtube", "v3", developerKey=YOUTUBE_API_KEY)
channel_response = youtube.channels().list(
part="statistics",
id=channel_id
).execute()
if channel_response["items"]:
channel = channel_response["items"][0]
subscriber_count = int(channel["statistics"]["subscriberCount"])
else:
subscriber_count = 0
return subscriber_count
def get_video_data(query, max_results, published_after, published_before):
youtube = build("youtube", "v3", developerKey=YOUTUBE_API_KEY)
video_ids = []
next_page_token = None
while len(video_ids) < max_results:
search_response = youtube.search().list(
q=query,
type="video",
part="id",
maxResults=50,
pageToken=next_page_token,
order="viewCount",
publishedAfter=published_after,
publishedBefore=published_before
).execute()
video_ids.extend([item["id"]["videoId"] for item in search_response["items"]])
next_page_token = search_response.get("nextPageToken")
if not next_page_token:
break
video_ids = video_ids[:max_results]
video_stats = []
for video_id in video_ids:
stats = get_video_stats(video_id)
channel_id = stats["Channel ID"]
subscriber_count = get_channel_stats(channel_id)
stats["Subscriber Count"] = subscriber_count
video_stats.append(stats)
video_stats_df = pd.DataFrame(video_stats)
return video_stats_df
def download_csv(df, filename):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
href = f'<a href="data:file/csv;base64,{b64}" download="{filename}.csv">Download {filename} CSV</a>'
return href
def visualize_video_ranking(video_stats_df):
video_stats_df["Active_Index"] = video_stats_df["View Count"] / video_stats_df["Subscriber Count"]
csv_download_link = download_csv(video_stats_df, "video_stats")
fig = px.bar(video_stats_df, x="Video ID", y="Active_Index", color="View Count",
labels={"Video ID": "Video ID", "Active_Index": "Active_Index"},
title="Video Active Index")
fig.update_layout(height=500, width=500)
return video_stats_df, fig, csv_download_link
def analyze_titles(video_stats_df, n_clusters=5):
titles = video_stats_df['Title'].tolist()
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(titles)
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
kmeans.fit(tfidf_matrix)
labels = kmeans.labels_
video_stats_df["Cluster"] = labels
cluster_summaries = []
for i in range(n_clusters):
cluster_titles = video_stats_df[video_stats_df["Cluster"] == i]['Title'].tolist()
cluster_text = ' '.join(cluster_titles)
summary = summarize_cluster(cluster_text, i)
cluster_summaries.append(summary)
cluster_summary_df = pd.DataFrame({'Cluster': range(n_clusters), 'Summary': cluster_summaries})
return cluster_summary_df
def summarize_cluster(cluster_text, cluster_num):
response = client(inputs=cluster_text)
summary = response[0]["generated_text"].strip()
return summary
def main(query, max_results, period, page, n_clusters=5):
if query:
# ๊ธฐ๊ฐ„ ์„ค์ •
now = datetime.utcnow()
published_before = now.isoformat("T") + "Z"
if period == "1์ฃผ์ผ":
published_after = (now - timedelta(days=7)).isoformat("T") + "Z"
elif period == "1๊ฐœ์›”":
published_after = (now - timedelta(days=30)).isoformat("T") + "Z"
elif period == "3๊ฐœ์›”":
published_after = (now - timedelta(days=90)).isoformat("T") + "Z"
else:
published_after = (now - timedelta(days=30)).isoformat("T") + "Z" # ๊ธฐ๋ณธ๊ฐ’ 1๊ฐœ์›”
video_stats_df = get_video_data(query, max_results, published_after, published_before)
if page == "Video Ranking":
video_stats_df, fig, csv_download_link = visualize_video_ranking(video_stats_df)
return video_stats_df, fig, csv_download_link
elif page == "Title Analysis":
cluster_summary_df = analyze_titles(video_stats_df, n_clusters)
return cluster_summary_df, None, None
iface = gr.Interface(
fn=main,
inputs=[
gr.components.Textbox(label="๊ฒ€์ƒ‰ ์ฟผ๋ฆฌ"),
gr.components.Slider(minimum=1, maximum=1000, value=5, label="์ตœ๋Œ€ ๊ฒฐ๊ณผ ์ˆ˜"),
gr.components.Dropdown(["1์ฃผ์ผ", "1๊ฐœ์›”", "3๊ฐœ์›”"], label="๊ธฐ๊ฐ„"),
gr.components.Dropdown(["Video Ranking", "Title Analysis"], label="ํŽ˜์ด์ง€"),
gr.components.Slider(minimum=2, maximum=10, value=5, label="ํด๋Ÿฌ์Šคํ„ฐ ์ˆ˜")
],
outputs=[
gr.components.Dataframe(label="๊ฒฐ๊ณผ"),
gr.components.Plot(label="๊ทธ๋ž˜ํ”„"),
gr.components.HTML(label="CSV ๋‹ค์šด๋กœ๋“œ ๋งํฌ")
],
live=False,
title="YouTube ๋ถ„์„ ๋„๊ตฌ"
)
if __name__ == "__main__":
iface.launch()