File size: 6,023 Bytes
e6062ad
 
d5de94c
e6062ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5de94c
e6062ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5de94c
e6062ad
 
 
 
 
 
 
 
 
d5de94c
e6062ad
 
d5de94c
e6062ad
 
 
 
 
 
 
 
d5de94c
e6062ad
 
 
fb667fe
e6062ad
d5de94c
 
 
e6062ad
d5de94c
e6062ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217e57c
 
 
e6062ad
 
b33fab8
d5de94c
b33fab8
 
e6062ad
d5de94c
e6062ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5de94c
 
 
 
 
 
 
 
 
 
e6062ad
d5de94c
 
 
 
e6062ad
d5de94c
e6062ad
d5de94c
 
 
 
 
 
 
 
 
 
e6062ad
d5de94c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6062ad
d5de94c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import tempfile
import time
from typing import Any
from collections.abc import Sequence

import gradio as gr
import numpy as np
import pillow_heif
import spaces
import torch
from gradio_image_annotation import image_annotator
from gradio_imageslider import ImageSlider
from PIL import Image
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from refiners.fluxion.utils import no_grad
from refiners.solutions import BoxSegmenter

BoundingBox = tuple[int, int, int, int]

pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Initialize segmenter
segmenter = BoxSegmenter(device="cpu")
segmenter.device = device
segmenter.model = segmenter.model.to(device=segmenter.device)

def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
    if not bboxes:
        return None
    for bbox in bboxes:
        assert len(bbox) == 4
        assert all(isinstance(x, int) for x in bbox)
    return (
        min(bbox[0] for bbox in bboxes),
        min(bbox[1] for bbox in bboxes),
        max(bbox[2] for bbox in bboxes),
        max(bbox[3] for bbox in bboxes),
    )

def apply_mask(
    img: Image.Image,
    mask_img: Image.Image,
    defringe: bool = True,
) -> Image.Image:
    assert img.size == mask_img.size
    img = img.convert("RGB")
    mask_img = mask_img.convert("L")

    if defringe:
        # Mitigate edge halo effects via color decontamination
        rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
        foreground = estimate_foreground_ml(rgb, alpha)
        img = Image.fromarray((foreground * 255).astype("uint8"))

    result = Image.new("RGBA", img.size)
    result.paste(img, (0, 0), mask_img)
    return result

@spaces.GPU
def _gpu_process(
    img: Image.Image,
    bbox: BoundingBox | None,
) -> tuple[Image.Image, BoundingBox | None, list[str]]:
    time_log: list[str] = []
    
    t0 = time.time()
    mask = segmenter(img, bbox)
    time_log.append(f"segment: {time.time() - t0}")

    return mask, bbox, time_log

def _process(
    img: Image.Image,
    bbox: BoundingBox | None,
) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
    # enforce max dimensions for pymatting performance reasons
    if img.width > 2048 or img.height > 2048:
        orig_res = max(img.width, img.height)
        img.thumbnail((2048, 2048))
        if isinstance(bbox, tuple):
            x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in bbox)
            bbox = (x0, y0, x1, y1)

    mask, bbox, time_log = _gpu_process(img, bbox)

    t0 = time.time()
    masked_alpha = apply_mask(img, mask, defringe=True)
    time_log.append(f"crop: {time.time() - t0}")
    print(", ".join(time_log))

    masked_rgb = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)

    thresholded = mask.point(lambda p: 255 if p > 10 else 0)
    bbox = thresholded.getbbox()
    to_dl = masked_alpha.crop(bbox)

    temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
    to_dl.save(temp, format="PNG")
    temp.close()

    return (img, masked_rgb), gr.DownloadButton(value=temp.name, interactive=True)

def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
    assert isinstance(img := prompts["image"], Image.Image)
    assert isinstance(boxes := prompts["boxes"], list)
    if len(boxes) == 1:
        assert isinstance(box := boxes[0], dict)
        bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"])
    else:
        assert len(boxes) == 0
        bbox = None
    return _process(img, bbox)

def on_change_bbox(prompts: dict[str, Any] | None):
    return gr.update(interactive=prompts is not None)

TITLE = """
<center>
  <h1 style="font-size: 1.5rem; margin-bottom: 0.5rem;">
    Object Cutter With Bounding Box
  </h1>

  <p>
    Create high-quality HD cutouts for any object in your image using bounding box selection.
    <br>
    The object will be available on a transparent background, ready to paste elsewhere.
  </p>

  <p>
    This space uses the
    <a
        href="https://huggingface.co/finegrain/finegrain-box-segmenter"
        target="_blank"
    >Finegrain Box Segmenter model</a>,
    trained with a mix of natural data curated by Finegrain and
    <a
        href="https://huggingface.co/datasets/Nfiniteai/product-masks-sample"
        target="_blank"
    >synthetic data provided by Nfinite</a>.
  </p>
</center>
"""

with gr.Blocks() as demo:
    gr.HTML(TITLE)
    
    with gr.Row():
        with gr.Column():
            annotator = image_annotator(
                image_type="pil",
                disable_edit_boxes=True,
                show_download_button=False,
                show_share_button=False,
                single_box=True,
                label="Input",
            )
            btn = gr.ClearButton(value="Cut Out Object", interactive=False)
        with gr.Column():
            oimg = ImageSlider(label="Before / After", show_download_button=False)
            dlbt = gr.DownloadButton("Download Cutout", interactive=False)

    btn.add(oimg)

    annotator.change(
        fn=on_change_bbox,
        inputs=[annotator],
        outputs=[btn],
    )
    btn.click(
        fn=process_bbox,
        inputs=[annotator],
        outputs=[oimg, dlbt],
    )

    examples = [
        {
            "image": "examples/potted-plant.jpg",
            "boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}],
        },
        {
            "image": "examples/chair.jpg",
            "boxes": [{"xmin": 98, "ymin": 330, "xmax": 973, "ymax": 1468}],
        },
        {
            "image": "examples/black-lamp.jpg",
            "boxes": [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}],
        },
    ]

    ex = gr.Examples(
        examples=examples,
        inputs=[annotator],
        outputs=[oimg, dlbt],
        fn=process_bbox,
        cache_examples=True,
    )

demo.launch(share=False)