import os os.system("pip install tensorflow==2.3.0") os.system("pip install tensorflow_hub") os.system("pip install numpy==1.20.3") import tensorflow as tf # Load compressed models from tensorflow_hub os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED' import numpy as np import PIL.Image import time import functools def tensor_to_image(tensor): tensor = tensor*255 tensor = np.array(tensor, dtype=np.uint8) if np.ndim(tensor)>3: assert tensor.shape[0] == 1 tensor = tensor[0] return PIL.Image.fromarray(tensor) import tensorflow_hub as hub def load_img(path_to_img): max_dim = 512 img = tf.io.read_file(path_to_img) img = tf.image.decode_image(img, channels=3) img = tf.image.convert_image_dtype(img, tf.float32) shape = tf.cast(tf.shape(img)[:-1], tf.float32) long_dim = max(shape) scale = max_dim / long_dim new_shape = tf.cast(shape * scale, tf.int32) img = tf.image.resize(img, new_shape) img = img[tf.newaxis, :] return img import gradio as gr def inference(content_image, style_image): stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0] img = tensor_to_image(stylized_image) return img title = "TTT" gr.Interface( inference, gr.inputs.Image(type="pil", label="content_image"), gr.inputs.Image(type="pil", label="style_image"), gr.outputs.Image(type="pil", label="Output"), title=title, example=[], description="", enable_queue=True, allow_flagging="auto" ).launch()