# 🧰 Required libraries from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, tool from huggingface_hub import InferenceClient import requests from bs4 import BeautifulSoup import json import os import gradio as gr HF_TOKEN = os.getenv("HF_API_KEY") client = InferenceClient(token=HF_TOKEN) # 🛠️ Custom tool to get Hugging Face top daily paper @tool def get_hugging_face_top_daily_paper() -> str: """ Returns the title of the most upvoted paper on Hugging Face daily papers. """ try: url = "https://huggingface.co/papers" response = requests.get(url) response.raise_for_status() soup = BeautifulSoup(response.content, "html.parser") # Use more general selector containers = soup.find_all('div', attrs={'data-props': True}) top_paper = "" for container in containers: data_props = container.get('data-props', '') if data_props: try: json_data = json.loads(data_props.replace('"', '"')) if 'dailyPapers' in json_data: top_paper = json_data['dailyPapers'][0]['title'] break except json.JSONDecodeError: continue return top_paper or "No top paper found." except requests.exceptions.RequestException as e: return f"Error occurred while fetching the paper: {e}" # 🚀 Run the agent with a sample query if __name__ == "__main__": # 🤖 Load a model from Hugging Face Hub model = HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", api_key=HF_TOKEN) # 🔧 Initialize tools search_tool = DuckDuckGoSearchTool() # 🧠 Build the agent agent = CodeAgent( tools=[search_tool, get_hugging_face_top_daily_paper], model=model, additional_authorized_imports=["requests", "bs4", "json"] ) # 🖥️ Web interface def run_agent_interface(query): return agent.run(query) gr.Interface(fn=run_agent_interface, inputs="text", outputs="text").launch()