Update modules/text_analysis/discourse_analysis.py
Browse files
modules/text_analysis/discourse_analysis.py
CHANGED
|
@@ -8,6 +8,10 @@ import matplotlib.pyplot as plt
|
|
| 8 |
import pandas as pd
|
| 9 |
import numpy as np
|
| 10 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
|
@@ -23,6 +27,7 @@ from .stopwords import (
|
|
| 23 |
get_stopwords_for_spacy
|
| 24 |
)
|
| 25 |
|
|
|
|
| 26 |
#####################
|
| 27 |
# Define colors for grammatical categories
|
| 28 |
POS_COLORS = {
|
|
@@ -80,6 +85,27 @@ ENTITY_LABELS = {
|
|
| 80 |
}
|
| 81 |
}
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
#################
|
| 85 |
def compare_semantic_analysis(text1, text2, nlp, lang):
|
|
@@ -161,9 +187,17 @@ def create_concept_table(key_concepts):
|
|
| 161 |
|
| 162 |
|
| 163 |
##########################################################
|
|
|
|
| 164 |
def perform_discourse_analysis(text1, text2, nlp, lang):
|
| 165 |
"""
|
| 166 |
Realiza el análisis completo del discurso
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
"""
|
| 168 |
try:
|
| 169 |
logger.info("Iniciando análisis del discurso...")
|
|
@@ -174,27 +208,33 @@ def perform_discourse_analysis(text1, text2, nlp, lang):
|
|
| 174 |
|
| 175 |
if not nlp:
|
| 176 |
raise ValueError("Modelo de lenguaje no inicializado")
|
| 177 |
-
|
| 178 |
# Realizar análisis comparativo
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
# Crear tablas de resultados
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
|
| 195 |
result = {
|
| 196 |
-
'graph1':
|
| 197 |
-
'graph2':
|
|
|
|
| 198 |
'key_concepts1': key_concepts1,
|
| 199 |
'key_concepts2': key_concepts2,
|
| 200 |
'table1': table1,
|
|
@@ -202,17 +242,21 @@ def perform_discourse_analysis(text1, text2, nlp, lang):
|
|
| 202 |
'success': True
|
| 203 |
}
|
| 204 |
|
| 205 |
-
logger.info("Análisis del discurso completado
|
| 206 |
return result
|
| 207 |
|
| 208 |
except Exception as e:
|
| 209 |
logger.error(f"Error en perform_discourse_analysis: {str(e)}")
|
|
|
|
|
|
|
| 210 |
return {
|
| 211 |
'success': False,
|
| 212 |
'error': str(e)
|
| 213 |
}
|
| 214 |
finally:
|
| 215 |
-
|
|
|
|
|
|
|
| 216 |
|
| 217 |
#################################################################
|
| 218 |
def create_concept_table(key_concepts):
|
|
|
|
| 8 |
import pandas as pd
|
| 9 |
import numpy as np
|
| 10 |
import logging
|
| 11 |
+
import io
|
| 12 |
+
import base64
|
| 13 |
+
from collections import Counter, defaultdict
|
| 14 |
+
|
| 15 |
|
| 16 |
logger = logging.getLogger(__name__)
|
| 17 |
|
|
|
|
| 27 |
get_stopwords_for_spacy
|
| 28 |
)
|
| 29 |
|
| 30 |
+
|
| 31 |
#####################
|
| 32 |
# Define colors for grammatical categories
|
| 33 |
POS_COLORS = {
|
|
|
|
| 85 |
}
|
| 86 |
}
|
| 87 |
|
| 88 |
+
#################
|
| 89 |
+
def fig_to_bytes(fig):
|
| 90 |
+
"""
|
| 91 |
+
Convierte una figura de matplotlib a bytes en formato PNG.
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
fig: Figura de matplotlib
|
| 95 |
+
|
| 96 |
+
Returns:
|
| 97 |
+
bytes: Representación en bytes de la figura en formato PNG
|
| 98 |
+
"""
|
| 99 |
+
try:
|
| 100 |
+
import io
|
| 101 |
+
buf = io.BytesIO()
|
| 102 |
+
fig.savefig(buf, format='png', dpi=100, bbox_inches='tight')
|
| 103 |
+
buf.seek(0)
|
| 104 |
+
return buf.getvalue()
|
| 105 |
+
except Exception as e:
|
| 106 |
+
logger.error(f"Error al convertir figura a bytes: {str(e)}")
|
| 107 |
+
return None
|
| 108 |
+
|
| 109 |
|
| 110 |
#################
|
| 111 |
def compare_semantic_analysis(text1, text2, nlp, lang):
|
|
|
|
| 187 |
|
| 188 |
|
| 189 |
##########################################################
|
| 190 |
+
|
| 191 |
def perform_discourse_analysis(text1, text2, nlp, lang):
|
| 192 |
"""
|
| 193 |
Realiza el análisis completo del discurso
|
| 194 |
+
Args:
|
| 195 |
+
text1: Primer texto a analizar
|
| 196 |
+
text2: Segundo texto a analizar
|
| 197 |
+
nlp: Modelo de spaCy cargado
|
| 198 |
+
lang: Código de idioma
|
| 199 |
+
Returns:
|
| 200 |
+
dict: Resultados del análisis con gráficos convertidos a bytes
|
| 201 |
"""
|
| 202 |
try:
|
| 203 |
logger.info("Iniciando análisis del discurso...")
|
|
|
|
| 208 |
|
| 209 |
if not nlp:
|
| 210 |
raise ValueError("Modelo de lenguaje no inicializado")
|
| 211 |
+
|
| 212 |
# Realizar análisis comparativo
|
| 213 |
+
fig1, fig2, key_concepts1, key_concepts2 = compare_semantic_analysis(
|
| 214 |
+
text1, text2, nlp, lang
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
logger.info("Análisis comparativo completado, convirtiendo figuras a bytes...")
|
| 218 |
+
|
| 219 |
+
# Convertir figuras a bytes para almacenamiento
|
| 220 |
+
graph1_bytes = fig_to_bytes(fig1)
|
| 221 |
+
graph2_bytes = fig_to_bytes(fig2)
|
| 222 |
+
|
| 223 |
+
logger.info(f"Figura 1 convertida a {len(graph1_bytes) if graph1_bytes else 0} bytes")
|
| 224 |
+
logger.info(f"Figura 2 convertida a {len(graph2_bytes) if graph2_bytes else 0} bytes")
|
| 225 |
|
| 226 |
# Crear tablas de resultados
|
| 227 |
+
table1 = create_concept_table(key_concepts1)
|
| 228 |
+
table2 = create_concept_table(key_concepts2)
|
| 229 |
+
|
| 230 |
+
# Cerrar figuras para liberar memoria
|
| 231 |
+
plt.close(fig1)
|
| 232 |
+
plt.close(fig2)
|
| 233 |
|
| 234 |
result = {
|
| 235 |
+
'graph1': graph1_bytes, # Bytes en lugar de figura
|
| 236 |
+
'graph2': graph2_bytes, # Bytes en lugar de figura
|
| 237 |
+
'combined_graph': None, # No hay gráfico combinado por ahora
|
| 238 |
'key_concepts1': key_concepts1,
|
| 239 |
'key_concepts2': key_concepts2,
|
| 240 |
'table1': table1,
|
|
|
|
| 242 |
'success': True
|
| 243 |
}
|
| 244 |
|
| 245 |
+
logger.info("Análisis del discurso completado y listo para almacenamiento")
|
| 246 |
return result
|
| 247 |
|
| 248 |
except Exception as e:
|
| 249 |
logger.error(f"Error en perform_discourse_analysis: {str(e)}")
|
| 250 |
+
# Asegurar limpieza de recursos
|
| 251 |
+
plt.close('all')
|
| 252 |
return {
|
| 253 |
'success': False,
|
| 254 |
'error': str(e)
|
| 255 |
}
|
| 256 |
finally:
|
| 257 |
+
# Asegurar limpieza en todos los casos
|
| 258 |
+
plt.close('all')
|
| 259 |
+
|
| 260 |
|
| 261 |
#################################################################
|
| 262 |
def create_concept_table(key_concepts):
|