|
|
|
import base64
|
|
import logging
|
|
from datetime import datetime, timezone
|
|
from ..database.mongo_db import get_collection, insert_document, find_documents
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
COLLECTION_NAME = 'student_discourse_analysis'
|
|
|
|
|
|
|
|
def store_student_discourse_result(username, text1, text2, analysis_result):
|
|
"""
|
|
Guarda el resultado del análisis de discurso en MongoDB.
|
|
"""
|
|
try:
|
|
|
|
if not analysis_result.get('success', False):
|
|
logger.error("No se puede guardar un análisis fallido")
|
|
return False
|
|
|
|
logger.info(f"Almacenando análisis de discurso para {username}")
|
|
|
|
|
|
document = {
|
|
'username': username,
|
|
'timestamp': datetime.now(timezone.utc).isoformat(),
|
|
'text1': text1,
|
|
'text2': text2,
|
|
'key_concepts1': analysis_result.get('key_concepts1', []),
|
|
'key_concepts2': analysis_result.get('key_concepts2', [])
|
|
}
|
|
|
|
|
|
for graph_key in ['graph1', 'graph2', 'combined_graph']:
|
|
if graph_key in analysis_result and analysis_result[graph_key] is not None:
|
|
if isinstance(analysis_result[graph_key], bytes):
|
|
logger.info(f"Codificando {graph_key} como base64")
|
|
document[graph_key] = base64.b64encode(analysis_result[graph_key]).decode('utf-8')
|
|
logger.info(f"{graph_key} codificado correctamente, longitud: {len(document[graph_key])}")
|
|
else:
|
|
logger.warning(f"{graph_key} no es de tipo bytes, es: {type(analysis_result[graph_key])}")
|
|
else:
|
|
logger.info(f"{graph_key} no presente en el resultado del análisis")
|
|
|
|
|
|
collection = get_collection(COLLECTION_NAME)
|
|
if collection is None:
|
|
logger.error("No se pudo obtener la colección")
|
|
return False
|
|
|
|
result = collection.insert_one(document)
|
|
logger.info(f"Análisis de discurso guardado con ID: {result.inserted_id}")
|
|
return True
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error guardando análisis de discurso: {str(e)}")
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def get_student_discourse_analysis(username, limit=10):
|
|
"""
|
|
Recupera los análisis del discurso de un estudiante.
|
|
"""
|
|
try:
|
|
logger.info(f"Recuperando análisis de discurso para {username}")
|
|
|
|
collection = get_collection(COLLECTION_NAME)
|
|
if collection is None:
|
|
logger.error("No se pudo obtener la colección")
|
|
return []
|
|
|
|
query = {"username": username}
|
|
documents = list(collection.find(query).sort("timestamp", -1).limit(limit))
|
|
logger.info(f"Recuperados {len(documents)} documentos de análisis de discurso")
|
|
|
|
|
|
for doc in documents:
|
|
for graph_key in ['graph1', 'graph2', 'combined_graph']:
|
|
if graph_key in doc and doc[graph_key]:
|
|
try:
|
|
|
|
if isinstance(doc[graph_key], str):
|
|
logger.info(f"Decodificando {graph_key} de base64 a bytes")
|
|
doc[graph_key] = base64.b64decode(doc[graph_key])
|
|
logger.info(f"{graph_key} decodificado correctamente, tamaño: {len(doc[graph_key])} bytes")
|
|
elif not isinstance(doc[graph_key], bytes):
|
|
logger.warning(f"{graph_key} no es ni string ni bytes: {type(doc[graph_key])}")
|
|
except Exception as decode_error:
|
|
logger.error(f"Error decodificando {graph_key}: {str(decode_error)}")
|
|
doc[graph_key] = None
|
|
|
|
return documents
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error recuperando análisis de discurso: {str(e)}")
|
|
return []
|
|
|
|
|
|
|
|
def get_student_discourse_data(username):
|
|
"""
|
|
Obtiene un resumen de los análisis del discurso de un estudiante.
|
|
"""
|
|
try:
|
|
analyses = get_student_discourse_analysis(username, limit=None)
|
|
formatted_analyses = []
|
|
|
|
for analysis in analyses:
|
|
formatted_analysis = {
|
|
'timestamp': analysis['timestamp'],
|
|
'text1': analysis.get('text1', ''),
|
|
'text2': analysis.get('text2', ''),
|
|
'key_concepts1': analysis.get('key_concepts1', []),
|
|
'key_concepts2': analysis.get('key_concepts2', [])
|
|
}
|
|
formatted_analyses.append(formatted_analysis)
|
|
|
|
return {'entries': formatted_analyses}
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error al obtener datos del discurso: {str(e)}")
|
|
return {'entries': []}
|
|
|
|
|
|
def update_student_discourse_analysis(analysis_id, update_data):
|
|
"""
|
|
Actualiza un análisis del discurso existente.
|
|
"""
|
|
try:
|
|
query = {"_id": analysis_id}
|
|
update = {"$set": update_data}
|
|
return update_document(COLLECTION_NAME, query, update)
|
|
except Exception as e:
|
|
logger.error(f"Error al actualizar análisis del discurso: {str(e)}")
|
|
return False
|
|
|
|
|
|
def delete_student_discourse_analysis(analysis_id):
|
|
"""
|
|
Elimina un análisis del discurso.
|
|
"""
|
|
try:
|
|
query = {"_id": analysis_id}
|
|
return delete_document(COLLECTION_NAME, query)
|
|
except Exception as e:
|
|
logger.error(f"Error al eliminar análisis del discurso: {str(e)}")
|
|
return False |