Spaces:
Sleeping
Sleeping
Update modules/text_analysis/semantic_analysis.py
Browse files
modules/text_analysis/semantic_analysis.py
CHANGED
|
@@ -220,70 +220,132 @@ def fig_to_html(fig):
|
|
| 220 |
|
| 221 |
def identify_key_concepts(doc, min_freq=2, min_length=3):
|
| 222 |
"""
|
| 223 |
-
Identifica conceptos clave en el texto
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
"""
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
| 241 |
if freq >= min_freq]
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
| 246 |
|
| 247 |
def create_concept_graph(doc, key_concepts):
|
| 248 |
"""
|
| 249 |
Crea un grafo de relaciones entre conceptos.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
"""
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
for sent in doc.sents:
|
| 255 |
-
sentence_concepts = []
|
| 256 |
-
for token in sent:
|
| 257 |
-
if token.lemma_ in concept_words:
|
| 258 |
-
sentence_concepts.append(token.lemma_)
|
| 259 |
|
| 260 |
-
# Crear
|
| 261 |
-
for
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
def visualize_concept_graph(G, lang_code):
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
def create_entity_graph(entities):
|
| 289 |
G = nx.Graph()
|
|
|
|
| 220 |
|
| 221 |
def identify_key_concepts(doc, min_freq=2, min_length=3):
|
| 222 |
"""
|
| 223 |
+
Identifica conceptos clave en el texto.
|
| 224 |
+
Args:
|
| 225 |
+
doc: Documento procesado por spaCy
|
| 226 |
+
min_freq: Frecuencia mínima para considerar un concepto
|
| 227 |
+
min_length: Longitud mínima de palabra para considerar
|
| 228 |
+
Returns:
|
| 229 |
+
list: Lista de tuplas (concepto, frecuencia)
|
| 230 |
"""
|
| 231 |
+
try:
|
| 232 |
+
# Obtener stopwords para el idioma
|
| 233 |
+
stopwords = get_stopwords(doc.lang_)
|
| 234 |
+
|
| 235 |
+
# Contar frecuencias de palabras
|
| 236 |
+
word_freq = Counter()
|
| 237 |
+
|
| 238 |
+
for token in doc:
|
| 239 |
+
if (token.lemma_.lower() not in stopwords and
|
| 240 |
+
len(token.lemma_) >= min_length and
|
| 241 |
+
token.is_alpha and
|
| 242 |
+
not token.is_punct and
|
| 243 |
+
not token.like_num):
|
| 244 |
+
|
| 245 |
+
word_freq[token.lemma_.lower()] += 1
|
| 246 |
+
|
| 247 |
+
# Filtrar por frecuencia mínima
|
| 248 |
+
concepts = [(word, freq) for word, freq in word_freq.items()
|
| 249 |
if freq >= min_freq]
|
| 250 |
+
|
| 251 |
+
# Ordenar por frecuencia
|
| 252 |
+
concepts.sort(key=lambda x: x[1], reverse=True)
|
| 253 |
+
|
| 254 |
+
return concepts[:10] # Retornar los 10 conceptos más frecuentes
|
| 255 |
+
|
| 256 |
+
except Exception as e:
|
| 257 |
+
logger.error(f"Error en identify_key_concepts: {str(e)}")
|
| 258 |
+
return [] # Retornar lista vacía en caso de error
|
| 259 |
|
| 260 |
|
| 261 |
def create_concept_graph(doc, key_concepts):
|
| 262 |
"""
|
| 263 |
Crea un grafo de relaciones entre conceptos.
|
| 264 |
+
Args:
|
| 265 |
+
doc: Documento procesado por spaCy
|
| 266 |
+
key_concepts: Lista de tuplas (concepto, frecuencia)
|
| 267 |
+
Returns:
|
| 268 |
+
nx.Graph: Grafo de conceptos
|
| 269 |
"""
|
| 270 |
+
try:
|
| 271 |
+
G = nx.Graph()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
+
# Crear un conjunto de conceptos clave para búsqueda rápida
|
| 274 |
+
concept_words = {concept[0].lower() for concept in key_concepts}
|
| 275 |
+
|
| 276 |
+
# Añadir nodos al grafo
|
| 277 |
+
for concept, freq in key_concepts:
|
| 278 |
+
G.add_node(concept.lower(), weight=freq)
|
| 279 |
+
|
| 280 |
+
# Analizar cada oración
|
| 281 |
+
for sent in doc.sents:
|
| 282 |
+
# Obtener conceptos en la oración actual
|
| 283 |
+
current_concepts = []
|
| 284 |
+
for token in sent:
|
| 285 |
+
if token.lemma_.lower() in concept_words:
|
| 286 |
+
current_concepts.append(token.lemma_.lower())
|
| 287 |
+
|
| 288 |
+
# Crear conexiones entre conceptos en la misma oración
|
| 289 |
+
for i, concept1 in enumerate(current_concepts):
|
| 290 |
+
for concept2 in current_concepts[i+1:]:
|
| 291 |
+
if concept1 != concept2:
|
| 292 |
+
# Si ya existe la arista, incrementar el peso
|
| 293 |
+
if G.has_edge(concept1, concept2):
|
| 294 |
+
G[concept1][concept2]['weight'] += 1
|
| 295 |
+
# Si no existe, crear nueva arista con peso 1
|
| 296 |
+
else:
|
| 297 |
+
G.add_edge(concept1, concept2, weight=1)
|
| 298 |
+
|
| 299 |
+
return G
|
| 300 |
+
|
| 301 |
+
except Exception as e:
|
| 302 |
+
logger.error(f"Error en create_concept_graph: {str(e)}")
|
| 303 |
+
# Retornar un grafo vacío en caso de error
|
| 304 |
+
return nx.Graph()
|
| 305 |
|
| 306 |
def visualize_concept_graph(G, lang_code):
|
| 307 |
+
"""
|
| 308 |
+
Visualiza el grafo de conceptos.
|
| 309 |
+
Args:
|
| 310 |
+
G: Grafo de networkx
|
| 311 |
+
lang_code: Código del idioma
|
| 312 |
+
Returns:
|
| 313 |
+
matplotlib.figure.Figure: Figura con el grafo visualizado
|
| 314 |
+
"""
|
| 315 |
+
try:
|
| 316 |
+
plt.figure(figsize=(12, 8))
|
| 317 |
+
|
| 318 |
+
# Calcular el layout del grafo
|
| 319 |
+
pos = nx.spring_layout(G)
|
| 320 |
+
|
| 321 |
+
# Obtener pesos de nodos y aristas
|
| 322 |
+
node_weights = [G.nodes[node].get('weight', 1) * 500 for node in G.nodes()]
|
| 323 |
+
edge_weights = [G[u][v].get('weight', 1) for u, v in G.edges()]
|
| 324 |
+
|
| 325 |
+
# Dibujar el grafo
|
| 326 |
+
nx.draw_networkx_nodes(G, pos,
|
| 327 |
+
node_size=node_weights,
|
| 328 |
+
node_color='lightblue',
|
| 329 |
+
alpha=0.6)
|
| 330 |
+
|
| 331 |
+
nx.draw_networkx_edges(G, pos,
|
| 332 |
+
width=edge_weights,
|
| 333 |
+
alpha=0.5,
|
| 334 |
+
edge_color='gray')
|
| 335 |
+
|
| 336 |
+
nx.draw_networkx_labels(G, pos,
|
| 337 |
+
font_size=10,
|
| 338 |
+
font_weight='bold')
|
| 339 |
+
|
| 340 |
+
plt.title("Red de conceptos relacionados")
|
| 341 |
+
plt.axis('off')
|
| 342 |
+
|
| 343 |
+
return plt.gcf()
|
| 344 |
+
|
| 345 |
+
except Exception as e:
|
| 346 |
+
logger.error(f"Error en visualize_concept_graph: {str(e)}")
|
| 347 |
+
# Retornar una figura vacía en caso de error
|
| 348 |
+
return plt.figure()
|
| 349 |
|
| 350 |
def create_entity_graph(entities):
|
| 351 |
G = nx.Graph()
|