Spaces:
Sleeping
Sleeping
Create semantic_analysis.py
Browse files
modules/text_analysis/semantic_analysis.py
ADDED
|
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modules/text_analysis/semantic_analysis.py
|
| 2 |
+
# [Mantener todas las importaciones y constantes existentes...]
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import spacy
|
| 6 |
+
import networkx as nx
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import io
|
| 9 |
+
import base64
|
| 10 |
+
from collections import Counter, defaultdict
|
| 11 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 12 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 13 |
+
import logging
|
| 14 |
+
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Define colors for grammatical categories
|
| 19 |
+
POS_COLORS = {
|
| 20 |
+
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD',
|
| 21 |
+
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90',
|
| 22 |
+
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA',
|
| 23 |
+
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9',
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
POS_TRANSLATIONS = {
|
| 27 |
+
'es': {
|
| 28 |
+
'ADJ': 'Adjetivo', 'ADP': 'Preposici贸n', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
|
| 29 |
+
'CCONJ': 'Conjunci贸n Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjecci贸n',
|
| 30 |
+
'NOUN': 'Sustantivo', 'NUM': 'N煤mero', 'PART': 'Part铆cula', 'PRON': 'Pronombre',
|
| 31 |
+
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunci贸n Subordinante', 'SYM': 'S铆mbolo',
|
| 32 |
+
'VERB': 'Verbo', 'X': 'Otro',
|
| 33 |
+
},
|
| 34 |
+
'en': {
|
| 35 |
+
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
|
| 36 |
+
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
|
| 37 |
+
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
|
| 38 |
+
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
|
| 39 |
+
'VERB': 'Verb', 'X': 'Other',
|
| 40 |
+
},
|
| 41 |
+
'fr': {
|
| 42 |
+
'ADJ': 'Adjectif', 'ADP': 'Pr茅position', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
|
| 43 |
+
'CCONJ': 'Conjonction de Coordination', 'DET': 'D茅terminant', 'INTJ': 'Interjection',
|
| 44 |
+
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
|
| 45 |
+
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
|
| 46 |
+
'VERB': 'Verbe', 'X': 'Autre',
|
| 47 |
+
}
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
ENTITY_LABELS = {
|
| 51 |
+
'es': {
|
| 52 |
+
"Personas": "lightblue",
|
| 53 |
+
"Lugares": "lightcoral",
|
| 54 |
+
"Inventos": "lightgreen",
|
| 55 |
+
"Fechas": "lightyellow",
|
| 56 |
+
"Conceptos": "lightpink"
|
| 57 |
+
},
|
| 58 |
+
'en': {
|
| 59 |
+
"People": "lightblue",
|
| 60 |
+
"Places": "lightcoral",
|
| 61 |
+
"Inventions": "lightgreen",
|
| 62 |
+
"Dates": "lightyellow",
|
| 63 |
+
"Concepts": "lightpink"
|
| 64 |
+
},
|
| 65 |
+
'fr': {
|
| 66 |
+
"Personnes": "lightblue",
|
| 67 |
+
"Lieux": "lightcoral",
|
| 68 |
+
"Inventions": "lightgreen",
|
| 69 |
+
"Dates": "lightyellow",
|
| 70 |
+
"Concepts": "lightpink"
|
| 71 |
+
}
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
CUSTOM_STOPWORDS = {
|
| 75 |
+
'es': {
|
| 76 |
+
# Art铆culos
|
| 77 |
+
'el', 'la', 'los', 'las', 'un', 'una', 'unos', 'unas',
|
| 78 |
+
# Preposiciones comunes
|
| 79 |
+
'a', 'ante', 'bajo', 'con', 'contra', 'de', 'desde', 'en',
|
| 80 |
+
'entre', 'hacia', 'hasta', 'para', 'por', 'seg煤n', 'sin',
|
| 81 |
+
'sobre', 'tras', 'durante', 'mediante',
|
| 82 |
+
# Conjunciones
|
| 83 |
+
'y', 'e', 'ni', 'o', 'u', 'pero', 'sino', 'porque',
|
| 84 |
+
# Pronombres
|
| 85 |
+
'yo', 't煤', '茅l', 'ella', 'nosotros', 'vosotros', 'ellos',
|
| 86 |
+
'ellas', 'este', 'esta', 'ese', 'esa', 'aquel', 'aquella',
|
| 87 |
+
# Verbos auxiliares comunes
|
| 88 |
+
'ser', 'estar', 'haber', 'tener',
|
| 89 |
+
# Palabras comunes en textos acad茅micos
|
| 90 |
+
'adem谩s', 'tambi茅n', 'asimismo', 'sin embargo', 'no obstante',
|
| 91 |
+
'por lo tanto', 'entonces', 'as铆', 'luego', 'pues',
|
| 92 |
+
# N煤meros escritos
|
| 93 |
+
'uno', 'dos', 'tres', 'primer', 'primera', 'segundo', 'segunda',
|
| 94 |
+
# Otras palabras comunes
|
| 95 |
+
'cada', 'todo', 'toda', 'todos', 'todas', 'otro', 'otra',
|
| 96 |
+
'donde', 'cuando', 'como', 'que', 'cual', 'quien',
|
| 97 |
+
'cuyo', 'cuya', 'hay', 'solo', 'ver', 'si', 'no',
|
| 98 |
+
# S铆mbolos y caracteres especiales
|
| 99 |
+
'#', '@', '/', '*', '+', '-', '=', '$', '%'
|
| 100 |
+
},
|
| 101 |
+
'en': {
|
| 102 |
+
# Articles
|
| 103 |
+
'the', 'a', 'an',
|
| 104 |
+
# Common prepositions
|
| 105 |
+
'in', 'on', 'at', 'by', 'for', 'with', 'about', 'against',
|
| 106 |
+
'between', 'into', 'through', 'during', 'before', 'after',
|
| 107 |
+
'above', 'below', 'to', 'from', 'up', 'down', 'of',
|
| 108 |
+
# Conjunctions
|
| 109 |
+
'and', 'or', 'but', 'nor', 'so', 'for', 'yet',
|
| 110 |
+
# Pronouns
|
| 111 |
+
'i', 'you', 'he', 'she', 'it', 'we', 'they', 'this',
|
| 112 |
+
'that', 'these', 'those', 'my', 'your', 'his', 'her',
|
| 113 |
+
# Auxiliary verbs
|
| 114 |
+
'be', 'am', 'is', 'are', 'was', 'were', 'been', 'have',
|
| 115 |
+
'has', 'had', 'do', 'does', 'did',
|
| 116 |
+
# Common academic words
|
| 117 |
+
'therefore', 'however', 'thus', 'hence', 'moreover',
|
| 118 |
+
'furthermore', 'nevertheless',
|
| 119 |
+
# Numbers written
|
| 120 |
+
'one', 'two', 'three', 'first', 'second', 'third',
|
| 121 |
+
# Other common words
|
| 122 |
+
'where', 'when', 'how', 'what', 'which', 'who',
|
| 123 |
+
'whom', 'whose', 'there', 'here', 'just', 'only',
|
| 124 |
+
# Symbols and special characters
|
| 125 |
+
'#', '@', '/', '*', '+', '-', '=', '$', '%'
|
| 126 |
+
},
|
| 127 |
+
'fr': {
|
| 128 |
+
# Articles
|
| 129 |
+
'le', 'la', 'les', 'un', 'une', 'des',
|
| 130 |
+
# Prepositions
|
| 131 |
+
'脿', 'de', 'dans', 'sur', 'en', 'par', 'pour', 'avec',
|
| 132 |
+
'sans', 'sous', 'entre', 'derri猫re', 'chez', 'avant',
|
| 133 |
+
# Conjunctions
|
| 134 |
+
'et', 'ou', 'mais', 'donc', 'car', 'ni', 'or',
|
| 135 |
+
# Pronouns
|
| 136 |
+
'je', 'tu', 'il', 'elle', 'nous', 'vous', 'ils',
|
| 137 |
+
'elles', 'ce', 'cette', 'ces', 'celui', 'celle',
|
| 138 |
+
# Auxiliary verbs
|
| 139 |
+
'锚tre', 'avoir', 'faire',
|
| 140 |
+
# Academic words
|
| 141 |
+
'donc', 'cependant', 'n茅anmoins', 'ainsi', 'toutefois',
|
| 142 |
+
'pourtant', 'alors',
|
| 143 |
+
# Numbers
|
| 144 |
+
'un', 'deux', 'trois', 'premier', 'premi猫re', 'second',
|
| 145 |
+
# Other common words
|
| 146 |
+
'o霉', 'quand', 'comment', 'que', 'qui', 'quoi',
|
| 147 |
+
'quel', 'quelle', 'plus', 'moins',
|
| 148 |
+
# Symbols
|
| 149 |
+
'#', '@', '/', '*', '+', '-', '=', '$', '%'
|
| 150 |
+
}
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
##############################################################################################################
|
| 154 |
+
def get_stopwords(lang_code):
|
| 155 |
+
"""
|
| 156 |
+
Obtiene el conjunto de stopwords para un idioma espec铆fico.
|
| 157 |
+
Combina las stopwords de spaCy con las personalizadas.
|
| 158 |
+
"""
|
| 159 |
+
try:
|
| 160 |
+
nlp = spacy.load(f'{lang_code}_core_news_sm')
|
| 161 |
+
spacy_stopwords = nlp.Defaults.stop_words
|
| 162 |
+
custom_stopwords = CUSTOM_STOPWORDS.get(lang_code, set())
|
| 163 |
+
return spacy_stopwords.union(custom_stopwords)
|
| 164 |
+
except:
|
| 165 |
+
return CUSTOM_STOPWORDS.get(lang_code, set())
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def perform_semantic_analysis(text, nlp, lang_code):
|
| 169 |
+
"""
|
| 170 |
+
Realiza el an谩lisis sem谩ntico completo del texto.
|
| 171 |
+
Args:
|
| 172 |
+
text: Texto a analizar
|
| 173 |
+
nlp: Modelo de spaCy
|
| 174 |
+
lang_code: C贸digo del idioma
|
| 175 |
+
Returns:
|
| 176 |
+
dict: Resultados del an谩lisis
|
| 177 |
+
"""
|
| 178 |
+
|
| 179 |
+
logger.info(f"Starting semantic analysis for language: {lang_code}")
|
| 180 |
+
try:
|
| 181 |
+
doc = nlp(text)
|
| 182 |
+
key_concepts = identify_key_concepts(doc)
|
| 183 |
+
concept_graph = create_concept_graph(doc, key_concepts)
|
| 184 |
+
concept_graph_fig = visualize_concept_graph(concept_graph, lang_code)
|
| 185 |
+
entities = extract_entities(doc, lang_code)
|
| 186 |
+
entity_graph = create_entity_graph(entities)
|
| 187 |
+
entity_graph_fig = visualize_entity_graph(entity_graph, lang_code)
|
| 188 |
+
|
| 189 |
+
# Convertir figuras a bytes
|
| 190 |
+
concept_graph_bytes = fig_to_bytes(concept_graph_fig)
|
| 191 |
+
entity_graph_bytes = fig_to_bytes(entity_graph_fig)
|
| 192 |
+
|
| 193 |
+
logger.info("Semantic analysis completed successfully")
|
| 194 |
+
return {
|
| 195 |
+
'key_concepts': key_concepts,
|
| 196 |
+
'concept_graph': concept_graph_bytes,
|
| 197 |
+
'entities': entities,
|
| 198 |
+
'entity_graph': entity_graph_bytes
|
| 199 |
+
}
|
| 200 |
+
except Exception as e:
|
| 201 |
+
logger.error(f"Error in perform_semantic_analysis: {str(e)}")
|
| 202 |
+
raise
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def fig_to_bytes(fig):
|
| 206 |
+
buf = io.BytesIO()
|
| 207 |
+
fig.savefig(buf, format='png')
|
| 208 |
+
buf.seek(0)
|
| 209 |
+
return buf.getvalue()
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def fig_to_html(fig):
|
| 213 |
+
buf = io.BytesIO()
|
| 214 |
+
fig.savefig(buf, format='png')
|
| 215 |
+
buf.seek(0)
|
| 216 |
+
img_str = base64.b64encode(buf.getvalue()).decode()
|
| 217 |
+
return f'<img src="data:image/png;base64,{img_str}" />'
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def identify_key_concepts(doc, min_freq=2, min_length=3):
|
| 222 |
+
"""
|
| 223 |
+
Identifica conceptos clave en el texto.
|
| 224 |
+
Args:
|
| 225 |
+
doc: Documento procesado por spaCy
|
| 226 |
+
min_freq: Frecuencia m铆nima para considerar un concepto
|
| 227 |
+
min_length: Longitud m铆nima de palabra para considerar
|
| 228 |
+
Returns:
|
| 229 |
+
list: Lista de tuplas (concepto, frecuencia)
|
| 230 |
+
"""
|
| 231 |
+
try:
|
| 232 |
+
# Obtener stopwords para el idioma
|
| 233 |
+
stopwords = get_stopwords(doc.lang_)
|
| 234 |
+
|
| 235 |
+
# Contar frecuencias de palabras
|
| 236 |
+
word_freq = Counter()
|
| 237 |
+
|
| 238 |
+
for token in doc:
|
| 239 |
+
if (token.lemma_.lower() not in stopwords and
|
| 240 |
+
len(token.lemma_) >= min_length and
|
| 241 |
+
token.is_alpha and
|
| 242 |
+
not token.is_punct and
|
| 243 |
+
not token.like_num):
|
| 244 |
+
|
| 245 |
+
word_freq[token.lemma_.lower()] += 1
|
| 246 |
+
|
| 247 |
+
# Filtrar por frecuencia m铆nima
|
| 248 |
+
concepts = [(word, freq) for word, freq in word_freq.items()
|
| 249 |
+
if freq >= min_freq]
|
| 250 |
+
|
| 251 |
+
# Ordenar por frecuencia
|
| 252 |
+
concepts.sort(key=lambda x: x[1], reverse=True)
|
| 253 |
+
|
| 254 |
+
return concepts[:10] # Retornar los 10 conceptos m谩s frecuentes
|
| 255 |
+
|
| 256 |
+
except Exception as e:
|
| 257 |
+
logger.error(f"Error en identify_key_concepts: {str(e)}")
|
| 258 |
+
return [] # Retornar lista vac铆a en caso de error
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
def create_concept_graph(doc, key_concepts):
|
| 262 |
+
"""
|
| 263 |
+
Crea un grafo de relaciones entre conceptos.
|
| 264 |
+
Args:
|
| 265 |
+
doc: Documento procesado por spaCy
|
| 266 |
+
key_concepts: Lista de tuplas (concepto, frecuencia)
|
| 267 |
+
Returns:
|
| 268 |
+
nx.Graph: Grafo de conceptos
|
| 269 |
+
"""
|
| 270 |
+
try:
|
| 271 |
+
G = nx.Graph()
|
| 272 |
+
|
| 273 |
+
# Crear un conjunto de conceptos clave para b煤squeda r谩pida
|
| 274 |
+
concept_words = {concept[0].lower() for concept in key_concepts}
|
| 275 |
+
|
| 276 |
+
# A帽adir nodos al grafo
|
| 277 |
+
for concept, freq in key_concepts:
|
| 278 |
+
G.add_node(concept.lower(), weight=freq)
|
| 279 |
+
|
| 280 |
+
# Analizar cada oraci贸n
|
| 281 |
+
for sent in doc.sents:
|
| 282 |
+
# Obtener conceptos en la oraci贸n actual
|
| 283 |
+
current_concepts = []
|
| 284 |
+
for token in sent:
|
| 285 |
+
if token.lemma_.lower() in concept_words:
|
| 286 |
+
current_concepts.append(token.lemma_.lower())
|
| 287 |
+
|
| 288 |
+
# Crear conexiones entre conceptos en la misma oraci贸n
|
| 289 |
+
for i, concept1 in enumerate(current_concepts):
|
| 290 |
+
for concept2 in current_concepts[i+1:]:
|
| 291 |
+
if concept1 != concept2:
|
| 292 |
+
# Si ya existe la arista, incrementar el peso
|
| 293 |
+
if G.has_edge(concept1, concept2):
|
| 294 |
+
G[concept1][concept2]['weight'] += 1
|
| 295 |
+
# Si no existe, crear nueva arista con peso 1
|
| 296 |
+
else:
|
| 297 |
+
G.add_edge(concept1, concept2, weight=1)
|
| 298 |
+
|
| 299 |
+
return G
|
| 300 |
+
|
| 301 |
+
except Exception as e:
|
| 302 |
+
logger.error(f"Error en create_concept_graph: {str(e)}")
|
| 303 |
+
# Retornar un grafo vac铆o en caso de error
|
| 304 |
+
return nx.Graph()
|
| 305 |
+
|
| 306 |
+
def visualize_concept_graph(G, lang_code):
|
| 307 |
+
"""
|
| 308 |
+
Visualiza el grafo de conceptos.
|
| 309 |
+
Args:
|
| 310 |
+
G: Grafo de networkx
|
| 311 |
+
lang_code: C贸digo del idioma
|
| 312 |
+
Returns:
|
| 313 |
+
matplotlib.figure.Figure: Figura con el grafo visualizado
|
| 314 |
+
"""
|
| 315 |
+
try:
|
| 316 |
+
plt.figure(figsize=(12, 8))
|
| 317 |
+
|
| 318 |
+
# Calcular el layout del grafo
|
| 319 |
+
pos = nx.spring_layout(G)
|
| 320 |
+
|
| 321 |
+
# Obtener pesos de nodos y aristas
|
| 322 |
+
node_weights = [G.nodes[node].get('weight', 1) * 500 for node in G.nodes()]
|
| 323 |
+
edge_weights = [G[u][v].get('weight', 1) for u, v in G.edges()]
|
| 324 |
+
|
| 325 |
+
# Dibujar el grafo
|
| 326 |
+
nx.draw_networkx_nodes(G, pos,
|
| 327 |
+
node_size=node_weights,
|
| 328 |
+
node_color='lightblue',
|
| 329 |
+
alpha=0.6)
|
| 330 |
+
|
| 331 |
+
nx.draw_networkx_edges(G, pos,
|
| 332 |
+
width=edge_weights,
|
| 333 |
+
alpha=0.5,
|
| 334 |
+
edge_color='gray')
|
| 335 |
+
|
| 336 |
+
nx.draw_networkx_labels(G, pos,
|
| 337 |
+
font_size=10,
|
| 338 |
+
font_weight='bold')
|
| 339 |
+
|
| 340 |
+
plt.title("Red de conceptos relacionados")
|
| 341 |
+
plt.axis('off')
|
| 342 |
+
|
| 343 |
+
return plt.gcf()
|
| 344 |
+
|
| 345 |
+
except Exception as e:
|
| 346 |
+
logger.error(f"Error en visualize_concept_graph: {str(e)}")
|
| 347 |
+
# Retornar una figura vac铆a en caso de error
|
| 348 |
+
return plt.figure()
|
| 349 |
+
|
| 350 |
+
def create_entity_graph(entities):
|
| 351 |
+
G = nx.Graph()
|
| 352 |
+
for entity_type, entity_list in entities.items():
|
| 353 |
+
for entity in entity_list:
|
| 354 |
+
G.add_node(entity, type=entity_type)
|
| 355 |
+
for i, entity1 in enumerate(entity_list):
|
| 356 |
+
for entity2 in entity_list[i+1:]:
|
| 357 |
+
G.add_edge(entity1, entity2)
|
| 358 |
+
return G
|
| 359 |
+
|
| 360 |
+
def visualize_entity_graph(G, lang_code):
|
| 361 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
| 362 |
+
pos = nx.spring_layout(G)
|
| 363 |
+
for entity_type, color in ENTITY_LABELS[lang_code].items():
|
| 364 |
+
node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type]
|
| 365 |
+
nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax)
|
| 366 |
+
nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax)
|
| 367 |
+
nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax)
|
| 368 |
+
ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16)
|
| 369 |
+
ax.axis('off')
|
| 370 |
+
plt.tight_layout()
|
| 371 |
+
return fig
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
#################################################################################
|
| 375 |
+
def create_topic_graph(topics, doc):
|
| 376 |
+
G = nx.Graph()
|
| 377 |
+
for topic in topics:
|
| 378 |
+
G.add_node(topic, weight=doc.text.count(topic))
|
| 379 |
+
for i, topic1 in enumerate(topics):
|
| 380 |
+
for topic2 in topics[i+1:]:
|
| 381 |
+
weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text)
|
| 382 |
+
if weight > 0:
|
| 383 |
+
G.add_edge(topic1, topic2, weight=weight)
|
| 384 |
+
return G
|
| 385 |
+
|
| 386 |
+
def visualize_topic_graph(G, lang_code):
|
| 387 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
| 388 |
+
pos = nx.spring_layout(G)
|
| 389 |
+
node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()]
|
| 390 |
+
nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax)
|
| 391 |
+
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax)
|
| 392 |
+
edge_weights = [G[u][v]['weight'] for u, v in G.edges()]
|
| 393 |
+
nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax)
|
| 394 |
+
ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16)
|
| 395 |
+
ax.axis('off')
|
| 396 |
+
plt.tight_layout()
|
| 397 |
+
return fig
|
| 398 |
+
|
| 399 |
+
###########################################################################################
|
| 400 |
+
def generate_summary(doc, lang_code):
|
| 401 |
+
sentences = list(doc.sents)
|
| 402 |
+
summary = sentences[:3] # Toma las primeras 3 oraciones como resumen
|
| 403 |
+
return " ".join([sent.text for sent in summary])
|
| 404 |
+
|
| 405 |
+
def extract_entities(doc, lang_code):
|
| 406 |
+
entities = defaultdict(list)
|
| 407 |
+
for ent in doc.ents:
|
| 408 |
+
if ent.label_ in ENTITY_LABELS[lang_code]:
|
| 409 |
+
entities[ent.label_].append(ent.text)
|
| 410 |
+
return dict(entities)
|
| 411 |
+
|
| 412 |
+
def analyze_sentiment(doc, lang_code):
|
| 413 |
+
positive_words = sum(1 for token in doc if token.sentiment > 0)
|
| 414 |
+
negative_words = sum(1 for token in doc if token.sentiment < 0)
|
| 415 |
+
total_words = len(doc)
|
| 416 |
+
if positive_words > negative_words:
|
| 417 |
+
return "Positivo"
|
| 418 |
+
elif negative_words > positive_words:
|
| 419 |
+
return "Negativo"
|
| 420 |
+
else:
|
| 421 |
+
return "Neutral"
|
| 422 |
+
|
| 423 |
+
def extract_topics(doc, lang_code):
|
| 424 |
+
vectorizer = TfidfVectorizer(stop_words='english', max_features=5)
|
| 425 |
+
tfidf_matrix = vectorizer.fit_transform([doc.text])
|
| 426 |
+
feature_names = vectorizer.get_feature_names_out()
|
| 427 |
+
return list(feature_names)
|
| 428 |
+
|
| 429 |
+
# Aseg煤rate de que todas las funciones necesarias est茅n exportadas
|
| 430 |
+
__all__ = [
|
| 431 |
+
'perform_semantic_analysis',
|
| 432 |
+
'identify_key_concepts',
|
| 433 |
+
'create_concept_graph',
|
| 434 |
+
'visualize_concept_graph',
|
| 435 |
+
'create_entity_graph',
|
| 436 |
+
'visualize_entity_graph',
|
| 437 |
+
'generate_summary',
|
| 438 |
+
'extract_entities',
|
| 439 |
+
'analyze_sentiment',
|
| 440 |
+
'create_topic_graph',
|
| 441 |
+
'visualize_topic_graph',
|
| 442 |
+
'extract_topics',
|
| 443 |
+
'ENTITY_LABELS',
|
| 444 |
+
'POS_COLORS',
|
| 445 |
+
'POS_TRANSLATIONS'
|
| 446 |
+
]
|