Spaces:
Sleeping
Sleeping
Update modules/semantic/semantic_interface.py
Browse files- modules/semantic/semantic_interface.py +295 -295
modules/semantic/semantic_interface.py
CHANGED
@@ -1,296 +1,296 @@
|
|
1 |
-
#modules/semantic/semantic_interface.py
|
2 |
-
import streamlit as st
|
3 |
-
from streamlit_float import *
|
4 |
-
from streamlit_antd_components import *
|
5 |
-
from streamlit.components.v1 import html
|
6 |
-
import spacy_streamlit
|
7 |
-
import io
|
8 |
-
from io import BytesIO
|
9 |
-
import base64
|
10 |
-
import matplotlib.pyplot as plt
|
11 |
-
import pandas as pd
|
12 |
-
import re
|
13 |
-
import logging
|
14 |
-
|
15 |
-
# Configuración del logger
|
16 |
-
logger = logging.getLogger(__name__)
|
17 |
-
|
18 |
-
# Importaciones locales
|
19 |
-
from .semantic_process import (
|
20 |
-
process_semantic_input,
|
21 |
-
format_semantic_results
|
22 |
-
)
|
23 |
-
|
24 |
-
from ..utils.widget_utils import generate_unique_key
|
25 |
-
from ..database.semantic_mongo_db import store_student_semantic_result
|
26 |
-
from ..database.chat_mongo_db import store_chat_history, get_chat_history
|
27 |
-
|
28 |
-
# from ..database.semantic_export import export_user_interactions
|
29 |
-
|
30 |
-
|
31 |
-
###############################
|
32 |
-
|
33 |
-
# En semantic_interface.py
|
34 |
-
def display_semantic_interface(lang_code, nlp_models, semantic_t):
|
35 |
-
try:
|
36 |
-
# 1. Inicializar el estado de la sesión
|
37 |
-
if 'semantic_state' not in st.session_state:
|
38 |
-
st.session_state.semantic_state = {
|
39 |
-
'analysis_count': 0,
|
40 |
-
'last_analysis': None,
|
41 |
-
'current_file': None,
|
42 |
-
'pending_analysis': False # Nuevo flag para controlar el análisis pendiente
|
43 |
-
}
|
44 |
-
|
45 |
-
# 2. Área de carga de archivo con mensaje informativo
|
46 |
-
st.info(semantic_t.get('initial_instruction',
|
47 |
-
'Para comenzar un nuevo análisis semántico, cargue un archivo de texto (.txt)'))
|
48 |
-
|
49 |
-
uploaded_file = st.file_uploader(
|
50 |
-
semantic_t.get('semantic_file_uploader', 'Upload a text file for semantic analysis'),
|
51 |
-
type=['txt'],
|
52 |
-
key=f"semantic_file_uploader_{st.session_state.semantic_state['analysis_count']}"
|
53 |
-
)
|
54 |
-
|
55 |
-
# Verificar si hay un archivo cargado y un análisis pendiente
|
56 |
-
if uploaded_file is not None and st.session_state.semantic_state.get('pending_analysis', False):
|
57 |
-
try:
|
58 |
-
with st.spinner(semantic_t.get('processing', 'Processing...')):
|
59 |
-
# Realizar análisis
|
60 |
-
text_content = uploaded_file.getvalue().decode('utf-8')
|
61 |
-
|
62 |
-
analysis_result = process_semantic_input(
|
63 |
-
text_content,
|
64 |
-
lang_code,
|
65 |
-
nlp_models,
|
66 |
-
semantic_t
|
67 |
-
)
|
68 |
-
|
69 |
-
if analysis_result['success']:
|
70 |
-
# Guardar resultado
|
71 |
-
st.session_state.semantic_result = analysis_result
|
72 |
-
st.session_state.semantic_state['analysis_count'] += 1
|
73 |
-
st.session_state.semantic_state['current_file'] = uploaded_file.name
|
74 |
-
|
75 |
-
# Guardar en base de datos
|
76 |
-
storage_success = store_student_semantic_result(
|
77 |
-
st.session_state.username,
|
78 |
-
text_content,
|
79 |
-
analysis_result['analysis']
|
80 |
-
)
|
81 |
-
|
82 |
-
if storage_success:
|
83 |
-
st.success(
|
84 |
-
semantic_t.get('analysis_complete',
|
85 |
-
'Análisis completado y guardado. Para realizar un nuevo análisis, cargue otro archivo.')
|
86 |
-
)
|
87 |
-
else:
|
88 |
-
st.error(semantic_t.get('error_message', 'Error saving analysis'))
|
89 |
-
else:
|
90 |
-
st.error(analysis_result['message'])
|
91 |
-
|
92 |
-
# Restablecer el flag de análisis pendiente
|
93 |
-
st.session_state.semantic_state['pending_analysis'] = False
|
94 |
-
|
95 |
-
except Exception as e:
|
96 |
-
logger.error(f"Error en análisis semántico: {str(e)}")
|
97 |
-
st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}'))
|
98 |
-
# Restablecer el flag de análisis pendiente en caso de error
|
99 |
-
st.session_state.semantic_state['pending_analysis'] = False
|
100 |
-
|
101 |
-
# 3. Columnas para los botones y mensajes
|
102 |
-
col1, col2 = st.columns([1,4])
|
103 |
-
|
104 |
-
# 4. Botón de análisis
|
105 |
-
with col1:
|
106 |
-
analyze_button = st.button(
|
107 |
-
semantic_t.get('semantic_analyze_button', 'Analyze'),
|
108 |
-
key=f"semantic_analyze_button_{st.session_state.semantic_state['analysis_count']}",
|
109 |
-
type="primary",
|
110 |
-
icon="🔍",
|
111 |
-
disabled=uploaded_file is None,
|
112 |
-
use_container_width=True
|
113 |
-
)
|
114 |
-
|
115 |
-
# 5. Procesar análisis
|
116 |
-
if analyze_button and uploaded_file is not None:
|
117 |
-
# En lugar de realizar el análisis inmediatamente, establecer el flag
|
118 |
-
st.session_state.semantic_state['pending_analysis'] = True
|
119 |
-
# Forzar la recarga de la aplicación
|
120 |
-
st.rerun()
|
121 |
-
|
122 |
-
# 6. Mostrar resultados previos o mensaje inicial
|
123 |
-
elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None:
|
124 |
-
# Mostrar mensaje sobre el análisis actual
|
125 |
-
st.info(
|
126 |
-
semantic_t.get('current_analysis_message',
|
127 |
-
f'Mostrando análisis del archivo: {st.session_state.semantic_state["current_file"]}. '
|
128 |
-
'Para realizar un nuevo análisis, cargue otro archivo.')
|
129 |
-
)
|
130 |
-
|
131 |
-
display_semantic_results(
|
132 |
-
st.session_state.semantic_result,
|
133 |
-
lang_code,
|
134 |
-
semantic_t
|
135 |
-
)
|
136 |
-
else:
|
137 |
-
st.info(semantic_t.get('upload_prompt', 'Cargue un archivo para comenzar el análisis'))
|
138 |
-
|
139 |
-
except Exception as e:
|
140 |
-
logger.error(f"Error general en interfaz semántica: {str(e)}")
|
141 |
-
st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))
|
142 |
-
|
143 |
-
|
144 |
-
#######################################
|
145 |
-
def display_semantic_results(semantic_result, lang_code, semantic_t):
|
146 |
-
"""
|
147 |
-
Muestra los resultados del análisis semántico de conceptos clave.
|
148 |
-
"""
|
149 |
-
if semantic_result is None or not semantic_result['success']:
|
150 |
-
st.warning(semantic_t.get('no_results', 'No results available'))
|
151 |
-
return
|
152 |
-
|
153 |
-
analysis = semantic_result['analysis']
|
154 |
-
|
155 |
-
# Mostrar conceptos clave en formato horizontal
|
156 |
-
st.subheader(semantic_t.get('key_concepts', 'Key Concepts'))
|
157 |
-
if 'key_concepts' in analysis and analysis['key_concepts']:
|
158 |
-
# Crear tabla de conceptos
|
159 |
-
df = pd.DataFrame(
|
160 |
-
analysis['key_concepts'],
|
161 |
-
columns=[
|
162 |
-
semantic_t.get('concept', 'Concept'),
|
163 |
-
semantic_t.get('frequency', 'Frequency')
|
164 |
-
]
|
165 |
-
)
|
166 |
-
|
167 |
-
# Convertir DataFrame a formato horizontal
|
168 |
-
st.write(
|
169 |
-
"""
|
170 |
-
<style>
|
171 |
-
.concept-table {
|
172 |
-
display: flex;
|
173 |
-
flex-wrap: wrap;
|
174 |
-
gap: 10px;
|
175 |
-
margin-bottom: 20px;
|
176 |
-
}
|
177 |
-
.concept-item {
|
178 |
-
background-color: #f0f2f6;
|
179 |
-
border-radius: 5px;
|
180 |
-
padding: 8px 12px;
|
181 |
-
display: flex;
|
182 |
-
align-items: center;
|
183 |
-
gap: 8px;
|
184 |
-
}
|
185 |
-
.concept-name {
|
186 |
-
font-weight: bold;
|
187 |
-
}
|
188 |
-
.concept-freq {
|
189 |
-
color: #666;
|
190 |
-
font-size: 0.9em;
|
191 |
-
}
|
192 |
-
</style>
|
193 |
-
<div class="concept-table">
|
194 |
-
""" +
|
195 |
-
''.join([
|
196 |
-
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
197 |
-
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
198 |
-
for concept, freq in df.values
|
199 |
-
]) +
|
200 |
-
"</div>",
|
201 |
-
unsafe_allow_html=True
|
202 |
-
)
|
203 |
-
else:
|
204 |
-
st.info(semantic_t.get('no_concepts', 'No key concepts found'))
|
205 |
-
|
206 |
-
# Gráfico de conceptos
|
207 |
-
st.subheader(semantic_t.get('concept_graph', 'Concepts Graph'))
|
208 |
-
if 'concept_graph' in analysis and analysis['concept_graph'] is not None:
|
209 |
-
try:
|
210 |
-
# Container para el grafo con estilos mejorados
|
211 |
-
st.markdown(
|
212 |
-
"""
|
213 |
-
<style>
|
214 |
-
.graph-container {
|
215 |
-
background-color: white;
|
216 |
-
border-radius: 10px;
|
217 |
-
padding: 20px;
|
218 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
219 |
-
margin: 10px 0;
|
220 |
-
}
|
221 |
-
.button-container {
|
222 |
-
display: flex;
|
223 |
-
gap: 10px;
|
224 |
-
margin: 10px 0;
|
225 |
-
}
|
226 |
-
</style>
|
227 |
-
""",
|
228 |
-
unsafe_allow_html=True
|
229 |
-
)
|
230 |
-
|
231 |
-
with st.container():
|
232 |
-
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
233 |
-
|
234 |
-
# Mostrar grafo
|
235 |
-
graph_bytes = analysis['concept_graph']
|
236 |
-
graph_base64 = base64.b64encode(graph_bytes).decode()
|
237 |
-
st.markdown(
|
238 |
-
f'<img src="data:image/png;base64,{graph_base64}" alt="Concept Graph" style="width:100%;"/>',
|
239 |
-
unsafe_allow_html=True
|
240 |
-
)
|
241 |
-
|
242 |
-
# Leyenda del grafo
|
243 |
-
st.caption(semantic_t.get(
|
244 |
-
'graph_description',
|
245 |
-
'Visualización de relaciones entre conceptos clave identificados en el texto.'
|
246 |
-
))
|
247 |
-
|
248 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
249 |
-
|
250 |
-
# Contenedor para botones
|
251 |
-
col1, col2 = st.columns([1,4])
|
252 |
-
with col1:
|
253 |
-
st.download_button(
|
254 |
-
label="📥 " + semantic_t.get('download_graph', "Download"),
|
255 |
-
data=graph_bytes,
|
256 |
-
file_name="semantic_graph.png",
|
257 |
-
mime="image/png",
|
258 |
-
use_container_width=True
|
259 |
-
)
|
260 |
-
|
261 |
-
# Expandible con la interpretación
|
262 |
-
with st.expander("📊 " + semantic_t.get('graph_help', "Graph Interpretation")):
|
263 |
-
st.markdown("""
|
264 |
-
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
265 |
-
- 🎨 Los colores más intensos indican conceptos más centrales en el texto
|
266 |
-
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
267 |
-
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
268 |
-
""")
|
269 |
-
|
270 |
-
except Exception as e:
|
271 |
-
logger.error(f"Error displaying graph: {str(e)}")
|
272 |
-
st.error(semantic_t.get('graph_error', 'Error displaying the graph'))
|
273 |
-
else:
|
274 |
-
st.info(semantic_t.get('no_graph', 'No concept graph available'))
|
275 |
-
|
276 |
-
|
277 |
-
########################################################################################
|
278 |
-
'''
|
279 |
-
# Botón de exportación al final
|
280 |
-
if 'semantic_analysis_counter' in st.session_state:
|
281 |
-
col1, col2, col3 = st.columns([2,1,2])
|
282 |
-
with col2:
|
283 |
-
if st.button(
|
284 |
-
semantic_t.get('export_button', 'Export Analysis'),
|
285 |
-
key=f"semantic_export_{st.session_state.semantic_analysis_counter}",
|
286 |
-
use_container_width=True
|
287 |
-
):
|
288 |
-
pdf_buffer = export_user_interactions(st.session_state.username, 'semantic')
|
289 |
-
st.download_button(
|
290 |
-
label=semantic_t.get('download_pdf', 'Download PDF'),
|
291 |
-
data=pdf_buffer,
|
292 |
-
file_name="semantic_analysis.pdf",
|
293 |
-
mime="application/pdf",
|
294 |
-
key=f"semantic_download_{st.session_state.semantic_analysis_counter}"
|
295 |
-
)
|
296 |
'''
|
|
|
1 |
+
#modules/semantic/semantic_interface.py
|
2 |
+
import streamlit as st
|
3 |
+
from streamlit_float import *
|
4 |
+
from streamlit_antd_components import *
|
5 |
+
from streamlit.components.v1 import html
|
6 |
+
import spacy_streamlit
|
7 |
+
import io
|
8 |
+
from io import BytesIO
|
9 |
+
import base64
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import pandas as pd
|
12 |
+
import re
|
13 |
+
import logging
|
14 |
+
|
15 |
+
# Configuración del logger
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
# Importaciones locales
|
19 |
+
from .semantic_process import (
|
20 |
+
process_semantic_input,
|
21 |
+
format_semantic_results
|
22 |
+
)
|
23 |
+
|
24 |
+
from ..utils.widget_utils import generate_unique_key
|
25 |
+
from ..database.semantic_mongo_db import store_student_semantic_result
|
26 |
+
from ..database.chat_mongo_db import store_chat_history, get_chat_history
|
27 |
+
|
28 |
+
# from ..database.semantic_export import export_user_interactions
|
29 |
+
|
30 |
+
|
31 |
+
###############################
|
32 |
+
|
33 |
+
# En semantic_interface.py
|
34 |
+
def display_semantic_interface(lang_code, nlp_models, semantic_t):
|
35 |
+
try:
|
36 |
+
# 1. Inicializar el estado de la sesión
|
37 |
+
if 'semantic_state' not in st.session_state:
|
38 |
+
st.session_state.semantic_state = {
|
39 |
+
'analysis_count': 0,
|
40 |
+
'last_analysis': None,
|
41 |
+
'current_file': None,
|
42 |
+
'pending_analysis': False # Nuevo flag para controlar el análisis pendiente
|
43 |
+
}
|
44 |
+
|
45 |
+
# 2. Área de carga de archivo con mensaje informativo
|
46 |
+
st.info(semantic_t.get('initial_instruction',
|
47 |
+
'Para comenzar un nuevo análisis semántico, cargue un archivo de texto (.txt)'))
|
48 |
+
|
49 |
+
uploaded_file = st.file_uploader(
|
50 |
+
semantic_t.get('semantic_file_uploader', 'Upload a text file for semantic analysis'),
|
51 |
+
type=['txt'],
|
52 |
+
key=f"semantic_file_uploader_{st.session_state.semantic_state['analysis_count']}"
|
53 |
+
)
|
54 |
+
|
55 |
+
# Verificar si hay un archivo cargado y un análisis pendiente
|
56 |
+
if uploaded_file is not None and st.session_state.semantic_state.get('pending_analysis', False):
|
57 |
+
try:
|
58 |
+
with st.spinner(semantic_t.get('processing', 'Processing...')):
|
59 |
+
# Realizar análisis
|
60 |
+
text_content = uploaded_file.getvalue().decode('utf-8')
|
61 |
+
|
62 |
+
analysis_result = process_semantic_input(
|
63 |
+
text_content,
|
64 |
+
lang_code,
|
65 |
+
nlp_models,
|
66 |
+
semantic_t
|
67 |
+
)
|
68 |
+
|
69 |
+
if analysis_result['success']:
|
70 |
+
# Guardar resultado
|
71 |
+
st.session_state.semantic_result = analysis_result
|
72 |
+
st.session_state.semantic_state['analysis_count'] += 1
|
73 |
+
st.session_state.semantic_state['current_file'] = uploaded_file.name
|
74 |
+
|
75 |
+
# Guardar en base de datos
|
76 |
+
storage_success = store_student_semantic_result(
|
77 |
+
st.session_state.username,
|
78 |
+
text_content,
|
79 |
+
analysis_result['analysis']
|
80 |
+
)
|
81 |
+
|
82 |
+
if storage_success:
|
83 |
+
st.success(
|
84 |
+
semantic_t.get('analysis_complete',
|
85 |
+
'Análisis completado y guardado. Para realizar un nuevo análisis, cargue otro archivo.')
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
st.error(semantic_t.get('error_message', 'Error saving analysis'))
|
89 |
+
else:
|
90 |
+
st.error(analysis_result['message'])
|
91 |
+
|
92 |
+
# Restablecer el flag de análisis pendiente
|
93 |
+
st.session_state.semantic_state['pending_analysis'] = False
|
94 |
+
|
95 |
+
except Exception as e:
|
96 |
+
logger.error(f"Error en análisis semántico: {str(e)}")
|
97 |
+
st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}'))
|
98 |
+
# Restablecer el flag de análisis pendiente en caso de error
|
99 |
+
st.session_state.semantic_state['pending_analysis'] = False
|
100 |
+
|
101 |
+
# 3. Columnas para los botones y mensajes
|
102 |
+
col1, col2 = st.columns([1,4])
|
103 |
+
|
104 |
+
# 4. Botón de análisis
|
105 |
+
with col1:
|
106 |
+
analyze_button = st.button(
|
107 |
+
semantic_t.get('semantic_analyze_button', 'Analyze'),
|
108 |
+
key=f"semantic_analyze_button_{st.session_state.semantic_state['analysis_count']}",
|
109 |
+
type="primary",
|
110 |
+
icon="🔍",
|
111 |
+
disabled=uploaded_file is None,
|
112 |
+
use_container_width=True
|
113 |
+
)
|
114 |
+
|
115 |
+
# 5. Procesar análisis
|
116 |
+
if analyze_button and uploaded_file is not None:
|
117 |
+
# En lugar de realizar el análisis inmediatamente, establecer el flag
|
118 |
+
st.session_state.semantic_state['pending_analysis'] = True
|
119 |
+
# Forzar la recarga de la aplicación
|
120 |
+
st.rerun()
|
121 |
+
|
122 |
+
# 6. Mostrar resultados previos o mensaje inicial
|
123 |
+
elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None:
|
124 |
+
# Mostrar mensaje sobre el análisis actual
|
125 |
+
st.info(
|
126 |
+
semantic_t.get('current_analysis_message',
|
127 |
+
f'Mostrando análisis del archivo: {st.session_state.semantic_state["current_file"]}. '
|
128 |
+
'Para realizar un nuevo análisis, cargue otro archivo.')
|
129 |
+
)
|
130 |
+
|
131 |
+
display_semantic_results(
|
132 |
+
st.session_state.semantic_result,
|
133 |
+
lang_code,
|
134 |
+
semantic_t
|
135 |
+
)
|
136 |
+
else:
|
137 |
+
st.info(semantic_t.get('upload_prompt', 'Cargue un archivo para comenzar el análisis'))
|
138 |
+
|
139 |
+
except Exception as e:
|
140 |
+
logger.error(f"Error general en interfaz semántica: {str(e)}")
|
141 |
+
st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))
|
142 |
+
|
143 |
+
|
144 |
+
#######################################
|
145 |
+
def display_semantic_results(semantic_result, lang_code, semantic_t):
|
146 |
+
"""
|
147 |
+
Muestra los resultados del análisis semántico de conceptos clave.
|
148 |
+
"""
|
149 |
+
if semantic_result is None or not semantic_result['success']:
|
150 |
+
st.warning(semantic_t.get('no_results', 'No results available'))
|
151 |
+
return
|
152 |
+
|
153 |
+
analysis = semantic_result['analysis']
|
154 |
+
|
155 |
+
# Mostrar conceptos clave en formato horizontal
|
156 |
+
st.subheader(semantic_t.get('key_concepts', 'Key Concepts'))
|
157 |
+
if 'key_concepts' in analysis and analysis['key_concepts']:
|
158 |
+
# Crear tabla de conceptos
|
159 |
+
df = pd.DataFrame(
|
160 |
+
analysis['key_concepts'],
|
161 |
+
columns=[
|
162 |
+
semantic_t.get('concept', 'Concept'),
|
163 |
+
semantic_t.get('frequency', 'Frequency')
|
164 |
+
]
|
165 |
+
)
|
166 |
+
|
167 |
+
# Convertir DataFrame a formato horizontal
|
168 |
+
st.write(
|
169 |
+
"""
|
170 |
+
<style>
|
171 |
+
.concept-table {
|
172 |
+
display: flex;
|
173 |
+
flex-wrap: wrap;
|
174 |
+
gap: 10px;
|
175 |
+
margin-bottom: 20px;
|
176 |
+
}
|
177 |
+
.concept-item {
|
178 |
+
background-color: #f0f2f6;
|
179 |
+
border-radius: 5px;
|
180 |
+
padding: 8px 12px;
|
181 |
+
display: flex;
|
182 |
+
align-items: center;
|
183 |
+
gap: 8px;
|
184 |
+
}
|
185 |
+
.concept-name {
|
186 |
+
font-weight: bold;
|
187 |
+
}
|
188 |
+
.concept-freq {
|
189 |
+
color: #666;
|
190 |
+
font-size: 0.9em;
|
191 |
+
}
|
192 |
+
</style>
|
193 |
+
<div class="concept-table">
|
194 |
+
""" +
|
195 |
+
''.join([
|
196 |
+
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
197 |
+
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
198 |
+
for concept, freq in df.values
|
199 |
+
]) +
|
200 |
+
"</div>",
|
201 |
+
unsafe_allow_html=True
|
202 |
+
)
|
203 |
+
else:
|
204 |
+
st.info(semantic_t.get('no_concepts', 'No key concepts found'))
|
205 |
+
|
206 |
+
# Gráfico de conceptos
|
207 |
+
# st.subheader(semantic_t.get('concept_graph', 'Concepts Graph'))
|
208 |
+
if 'concept_graph' in analysis and analysis['concept_graph'] is not None:
|
209 |
+
try:
|
210 |
+
# Container para el grafo con estilos mejorados
|
211 |
+
st.markdown(
|
212 |
+
"""
|
213 |
+
<style>
|
214 |
+
.graph-container {
|
215 |
+
background-color: white;
|
216 |
+
border-radius: 10px;
|
217 |
+
padding: 20px;
|
218 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
219 |
+
margin: 10px 0;
|
220 |
+
}
|
221 |
+
.button-container {
|
222 |
+
display: flex;
|
223 |
+
gap: 10px;
|
224 |
+
margin: 10px 0;
|
225 |
+
}
|
226 |
+
</style>
|
227 |
+
""",
|
228 |
+
unsafe_allow_html=True
|
229 |
+
)
|
230 |
+
|
231 |
+
with st.container():
|
232 |
+
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
233 |
+
|
234 |
+
# Mostrar grafo
|
235 |
+
graph_bytes = analysis['concept_graph']
|
236 |
+
graph_base64 = base64.b64encode(graph_bytes).decode()
|
237 |
+
st.markdown(
|
238 |
+
f'<img src="data:image/png;base64,{graph_base64}" alt="Concept Graph" style="width:100%;"/>',
|
239 |
+
unsafe_allow_html=True
|
240 |
+
)
|
241 |
+
|
242 |
+
# Leyenda del grafo
|
243 |
+
st.caption(semantic_t.get(
|
244 |
+
'graph_description',
|
245 |
+
'Visualización de relaciones entre conceptos clave identificados en el texto.'
|
246 |
+
))
|
247 |
+
|
248 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
249 |
+
|
250 |
+
# Contenedor para botones
|
251 |
+
col1, col2 = st.columns([1,4])
|
252 |
+
with col1:
|
253 |
+
st.download_button(
|
254 |
+
label="📥 " + semantic_t.get('download_graph', "Download"),
|
255 |
+
data=graph_bytes,
|
256 |
+
file_name="semantic_graph.png",
|
257 |
+
mime="image/png",
|
258 |
+
use_container_width=True
|
259 |
+
)
|
260 |
+
|
261 |
+
# Expandible con la interpretación
|
262 |
+
with st.expander("📊 " + semantic_t.get('graph_help', "Graph Interpretation")):
|
263 |
+
st.markdown("""
|
264 |
+
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
265 |
+
- 🎨 Los colores más intensos indican conceptos más centrales en el texto
|
266 |
+
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
267 |
+
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
268 |
+
""")
|
269 |
+
|
270 |
+
except Exception as e:
|
271 |
+
logger.error(f"Error displaying graph: {str(e)}")
|
272 |
+
st.error(semantic_t.get('graph_error', 'Error displaying the graph'))
|
273 |
+
else:
|
274 |
+
st.info(semantic_t.get('no_graph', 'No concept graph available'))
|
275 |
+
|
276 |
+
|
277 |
+
########################################################################################
|
278 |
+
'''
|
279 |
+
# Botón de exportación al final
|
280 |
+
if 'semantic_analysis_counter' in st.session_state:
|
281 |
+
col1, col2, col3 = st.columns([2,1,2])
|
282 |
+
with col2:
|
283 |
+
if st.button(
|
284 |
+
semantic_t.get('export_button', 'Export Analysis'),
|
285 |
+
key=f"semantic_export_{st.session_state.semantic_analysis_counter}",
|
286 |
+
use_container_width=True
|
287 |
+
):
|
288 |
+
pdf_buffer = export_user_interactions(st.session_state.username, 'semantic')
|
289 |
+
st.download_button(
|
290 |
+
label=semantic_t.get('download_pdf', 'Download PDF'),
|
291 |
+
data=pdf_buffer,
|
292 |
+
file_name="semantic_analysis.pdf",
|
293 |
+
mime="application/pdf",
|
294 |
+
key=f"semantic_download_{st.session_state.semantic_analysis_counter}"
|
295 |
+
)
|
296 |
'''
|