Spaces:
Sleeping
Sleeping
Update modules/text_analysis/discourse_analysis.py
Browse files
modules/text_analysis/discourse_analysis.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
-
modules/text_analysis/discourse_analysis.py
|
| 2 |
-
|
| 3 |
import streamlit as st
|
| 4 |
import spacy
|
| 5 |
import networkx as nx
|
|
@@ -10,7 +9,6 @@ import logging
|
|
| 10 |
|
| 11 |
logger = logging.getLogger(__name__)
|
| 12 |
|
| 13 |
-
|
| 14 |
from .semantic_analysis import (
|
| 15 |
create_concept_graph,
|
| 16 |
visualize_concept_graph,
|
|
@@ -24,60 +22,74 @@ from .semantic_analysis import (
|
|
| 24 |
def compare_semantic_analysis(text1, text2, nlp, lang):
|
| 25 |
"""
|
| 26 |
Realiza el análisis semántico comparativo entre dos textos
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
"""
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
fig1.suptitle("")
|
| 45 |
-
fig2.suptitle("")
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
| 48 |
|
| 49 |
def create_concept_table(key_concepts):
|
| 50 |
"""
|
| 51 |
Crea una tabla de conceptos clave con sus frecuencias
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
"""
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
def perform_discourse_analysis(text1, text2, nlp, lang):
|
| 58 |
"""
|
| 59 |
Realiza el análisis completo del discurso
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
"""
|
| 61 |
try:
|
| 62 |
-
#
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
# Identificar conceptos clave
|
| 67 |
-
key_concepts1 = identify_key_concepts(doc1, min_freq=2, min_length=3)
|
| 68 |
-
key_concepts2 = identify_key_concepts(doc2, min_freq=2, min_length=3)
|
| 69 |
|
| 70 |
-
# Crear
|
| 71 |
-
G1 = create_concept_graph(doc1, key_concepts1)
|
| 72 |
-
G2 = create_concept_graph(doc2, key_concepts2)
|
| 73 |
-
|
| 74 |
-
# Visualizar grafos
|
| 75 |
-
fig1 = visualize_concept_graph(G1, lang)
|
| 76 |
-
fig2 = visualize_concept_graph(G2, lang)
|
| 77 |
-
fig1.suptitle("")
|
| 78 |
-
fig2.suptitle("")
|
| 79 |
-
|
| 80 |
-
# Crear tablas
|
| 81 |
table1 = create_concept_table(key_concepts1)
|
| 82 |
table2 = create_concept_table(key_concepts2)
|
| 83 |
|
|
@@ -92,8 +104,8 @@ def perform_discourse_analysis(text1, text2, nlp, lang):
|
|
| 92 |
}
|
| 93 |
|
| 94 |
except Exception as e:
|
| 95 |
-
logger.error(f"Error en
|
| 96 |
return {
|
| 97 |
'success': False,
|
| 98 |
'error': str(e)
|
| 99 |
-
}
|
|
|
|
| 1 |
+
# modules/text_analysis/discourse_analysis.py
|
|
|
|
| 2 |
import streamlit as st
|
| 3 |
import spacy
|
| 4 |
import networkx as nx
|
|
|
|
| 9 |
|
| 10 |
logger = logging.getLogger(__name__)
|
| 11 |
|
|
|
|
| 12 |
from .semantic_analysis import (
|
| 13 |
create_concept_graph,
|
| 14 |
visualize_concept_graph,
|
|
|
|
| 22 |
def compare_semantic_analysis(text1, text2, nlp, lang):
|
| 23 |
"""
|
| 24 |
Realiza el análisis semántico comparativo entre dos textos
|
| 25 |
+
Args:
|
| 26 |
+
text1: Primer texto a analizar
|
| 27 |
+
text2: Segundo texto a analizar
|
| 28 |
+
nlp: Modelo de spaCy cargado
|
| 29 |
+
lang: Código de idioma
|
| 30 |
+
Returns:
|
| 31 |
+
tuple: (fig1, fig2, key_concepts1, key_concepts2)
|
| 32 |
"""
|
| 33 |
+
try:
|
| 34 |
+
# Procesar los textos
|
| 35 |
+
doc1 = nlp(text1)
|
| 36 |
+
doc2 = nlp(text2)
|
| 37 |
|
| 38 |
+
# Identificar conceptos clave con parámetros específicos
|
| 39 |
+
key_concepts1 = identify_key_concepts(doc1, min_freq=2, min_length=3)
|
| 40 |
+
key_concepts2 = identify_key_concepts(doc2, min_freq=2, min_length=3)
|
| 41 |
|
| 42 |
+
# Crear y visualizar grafos
|
| 43 |
+
G1 = create_concept_graph(doc1, key_concepts1)
|
| 44 |
+
G2 = create_concept_graph(doc2, key_concepts2)
|
| 45 |
|
| 46 |
+
fig1 = visualize_concept_graph(G1, lang)
|
| 47 |
+
fig2 = visualize_concept_graph(G2, lang)
|
| 48 |
+
|
| 49 |
+
# Limpiar títulos
|
| 50 |
+
fig1.suptitle("")
|
| 51 |
+
fig2.suptitle("")
|
| 52 |
|
| 53 |
+
return fig1, fig2, key_concepts1, key_concepts2
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
except Exception as e:
|
| 56 |
+
logger.error(f"Error en compare_semantic_analysis: {str(e)}")
|
| 57 |
+
raise
|
| 58 |
|
| 59 |
def create_concept_table(key_concepts):
|
| 60 |
"""
|
| 61 |
Crea una tabla de conceptos clave con sus frecuencias
|
| 62 |
+
Args:
|
| 63 |
+
key_concepts: Lista de tuplas (concepto, frecuencia)
|
| 64 |
+
Returns:
|
| 65 |
+
pandas.DataFrame: Tabla formateada de conceptos
|
| 66 |
"""
|
| 67 |
+
try:
|
| 68 |
+
df = pd.DataFrame(key_concepts, columns=['Concepto', 'Frecuencia'])
|
| 69 |
+
df['Frecuencia'] = df['Frecuencia'].round(2)
|
| 70 |
+
return df
|
| 71 |
+
except Exception as e:
|
| 72 |
+
logger.error(f"Error en create_concept_table: {str(e)}")
|
| 73 |
+
raise
|
| 74 |
|
| 75 |
def perform_discourse_analysis(text1, text2, nlp, lang):
|
| 76 |
"""
|
| 77 |
Realiza el análisis completo del discurso
|
| 78 |
+
Args:
|
| 79 |
+
text1: Primer texto a analizar
|
| 80 |
+
text2: Segundo texto a analizar
|
| 81 |
+
nlp: Modelo de spaCy cargado
|
| 82 |
+
lang: Código de idioma
|
| 83 |
+
Returns:
|
| 84 |
+
dict: Resultados del análisis
|
| 85 |
"""
|
| 86 |
try:
|
| 87 |
+
# Realizar análisis comparativo
|
| 88 |
+
fig1, fig2, key_concepts1, key_concepts2 = compare_semantic_analysis(
|
| 89 |
+
text1, text2, nlp, lang
|
| 90 |
+
)
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
+
# Crear tablas de resultados
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
table1 = create_concept_table(key_concepts1)
|
| 94 |
table2 = create_concept_table(key_concepts2)
|
| 95 |
|
|
|
|
| 104 |
}
|
| 105 |
|
| 106 |
except Exception as e:
|
| 107 |
+
logger.error(f"Error en perform_discourse_analysis: {str(e)}")
|
| 108 |
return {
|
| 109 |
'success': False,
|
| 110 |
'error': str(e)
|
| 111 |
+
}
|