Spaces:
Sleeping
Sleeping
Update modules/semantic/semantic_process.py
Browse files
modules/semantic/semantic_process.py
CHANGED
|
@@ -15,12 +15,13 @@ from ..database.semantic_mongo_db import store_student_semantic_result
|
|
| 15 |
|
| 16 |
logger = logging.getLogger(__name__)
|
| 17 |
|
|
|
|
| 18 |
def process_semantic_input(text_content, lang_code, nlp_models, semantic_t):
|
| 19 |
"""
|
| 20 |
Procesa el texto ingresado para realizar el análisis semántico.
|
| 21 |
"""
|
| 22 |
try:
|
| 23 |
-
logger.info(f"Iniciando análisis semántico para texto de {len(
|
| 24 |
|
| 25 |
# Realizar el análisis semántico
|
| 26 |
nlp = nlp_models[lang_code]
|
|
@@ -44,7 +45,7 @@ def process_semantic_input(text_content, lang_code, nlp_models, semantic_t):
|
|
| 44 |
try:
|
| 45 |
store_result = store_student_semantic_result(
|
| 46 |
st.session_state.username,
|
| 47 |
-
text
|
| 48 |
analysis_result
|
| 49 |
)
|
| 50 |
if not store_result:
|
|
@@ -55,7 +56,7 @@ def process_semantic_input(text_content, lang_code, nlp_models, semantic_t):
|
|
| 55 |
# Devolver el resultado incluso si falla el guardado
|
| 56 |
return {
|
| 57 |
'success': True,
|
| 58 |
-
'message':
|
| 59 |
'analysis': {
|
| 60 |
'key_concepts': analysis_result['key_concepts'],
|
| 61 |
'concept_graph': analysis_result['concept_graph']
|
|
@@ -69,6 +70,7 @@ def process_semantic_input(text_content, lang_code, nlp_models, semantic_t):
|
|
| 69 |
'message': str(e),
|
| 70 |
'analysis': None
|
| 71 |
}
|
|
|
|
| 72 |
########################################################################################
|
| 73 |
def format_semantic_results(analysis_result, t):
|
| 74 |
"""
|
|
|
|
| 15 |
|
| 16 |
logger = logging.getLogger(__name__)
|
| 17 |
|
| 18 |
+
#############################################################################
|
| 19 |
def process_semantic_input(text_content, lang_code, nlp_models, semantic_t):
|
| 20 |
"""
|
| 21 |
Procesa el texto ingresado para realizar el análisis semántico.
|
| 22 |
"""
|
| 23 |
try:
|
| 24 |
+
logger.info(f"Iniciando análisis semántico para texto de {len(text_content)} caracteres")
|
| 25 |
|
| 26 |
# Realizar el análisis semántico
|
| 27 |
nlp = nlp_models[lang_code]
|
|
|
|
| 45 |
try:
|
| 46 |
store_result = store_student_semantic_result(
|
| 47 |
st.session_state.username,
|
| 48 |
+
text_content, # Cambiado de text a text_content
|
| 49 |
analysis_result
|
| 50 |
)
|
| 51 |
if not store_result:
|
|
|
|
| 56 |
# Devolver el resultado incluso si falla el guardado
|
| 57 |
return {
|
| 58 |
'success': True,
|
| 59 |
+
'message': semantic_t.get('success_message', 'Analysis completed successfully'), # Cambiado de t a semantic_t
|
| 60 |
'analysis': {
|
| 61 |
'key_concepts': analysis_result['key_concepts'],
|
| 62 |
'concept_graph': analysis_result['concept_graph']
|
|
|
|
| 70 |
'message': str(e),
|
| 71 |
'analysis': None
|
| 72 |
}
|
| 73 |
+
|
| 74 |
########################################################################################
|
| 75 |
def format_semantic_results(analysis_result, t):
|
| 76 |
"""
|