Spaces:
Running
Running
Update modules/text_analysis/morpho_analysis.py
Browse files
modules/text_analysis/morpho_analysis.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
import spacy
|
|
|
|
| 2 |
from spacy import displacy
|
|
|
|
| 3 |
from streamlit.components.v1 import html
|
| 4 |
import base64
|
| 5 |
|
|
@@ -88,74 +90,111 @@ POS_TRANSLATIONS = {
|
|
| 88 |
}
|
| 89 |
}
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
for
|
| 94 |
-
|
| 95 |
-
# Calculamos el ancho del SVG basado en la longitud de la oración
|
| 96 |
-
svg_width = max(600, len(words) * 120)
|
| 97 |
-
# Altura fija para cada oración
|
| 98 |
-
svg_height = 350 # Controla la altura del SVG
|
| 99 |
-
|
| 100 |
-
# Renderizamos el diagrama de dependencias
|
| 101 |
-
html = displacy.render(sent, style="dep", options={
|
| 102 |
-
"add_lemma":False, # Introduced in version 2.2.4, this argument prints the lemma’s in a separate row below the token texts.
|
| 103 |
-
"arrow_spacing": 12, #This argument is used for adjusting the spacing between arrows in px to avoid overlaps.
|
| 104 |
-
"arrow_width": 2, #This argument is used for adjusting the width of arrow head in px.
|
| 105 |
-
"arrow_stroke": 2, #This argument is used for adjusting the width of arrow path in px.
|
| 106 |
-
"collapse_punct": True, #It attaches punctuation to the tokens.
|
| 107 |
-
"collapse_phrases": False, # This argument merges the noun phrases into one token.
|
| 108 |
-
"compact":False, # If you will take this argument as true, you will get the “Compact mode” with square arrows that takes up less space.
|
| 109 |
-
"color": "#ffffff",
|
| 110 |
-
"bg": "#0d6efd",
|
| 111 |
-
"compact": False, #Put the value of this argument True, if you want to use fine-grained part-of-speech tags (Token.tag_), instead of coarse-grained tags (Token.pos_).
|
| 112 |
-
"distance": 100, # Aumentamos la distancia entre palabras
|
| 113 |
-
"fine_grained": False, #Put the value of this argument True, if you want to use fine-grained part-of-speech tags (Token.tag_), instead of coarse-grained tags (Token.pos_).
|
| 114 |
-
"offset_x": 55, # This argument is used for spacing on left side of the SVG in px.
|
| 115 |
-
"word_spacing": 25, #This argument is used for adjusting the vertical spacing between words and arcs in px.
|
| 116 |
-
})
|
| 117 |
-
|
| 118 |
-
# Ajustamos el tamaño del SVG y el viewBox
|
| 119 |
-
html = re.sub(r'width="(\d+)"', f'width="{svg_width}"', html)
|
| 120 |
-
html = re.sub(r'height="(\d+)"', f'height="{svg_height}"', html)
|
| 121 |
-
html = re.sub(r'<svg', f'<svg viewBox="0 0 {svg_width} {svg_height}"', html)
|
| 122 |
-
|
| 123 |
-
#html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html)
|
| 124 |
-
#html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', lambda m: f'<g transform="translate({m.group(1)},50)"', html)
|
| 125 |
-
|
| 126 |
-
# Movemos todo el contenido hacia abajo
|
| 127 |
-
#html = html.replace('<g', f'<g transform="translate(50, {svg_height - 200})"')
|
| 128 |
-
|
| 129 |
-
# Movemos todo el contenido hacia arriba para eliminar el espacio vacío en la parte superior
|
| 130 |
-
html = re.sub(r'<g transform="translate\((\d+),(\d+)\)"',
|
| 131 |
-
lambda m: f'<g transform="translate({m.group(1)},10)"', html)
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
# Ajustamos la posición de las etiquetas de las palabras
|
| 135 |
-
html = html.replace('dy="1em"', 'dy="-1em"')
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
html = html.replace('.displacy-tag {', '.displacy-tag { font-size: 14px;')
|
| 142 |
-
|
| 143 |
-
# Rotamos las etiquetas de las palabras para mejorar la legibilidad
|
| 144 |
-
#html = html.replace('class="displacy-label"', 'class="displacy-label" transform="rotate(30)"')
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
arc_diagrams.append(html)
|
| 147 |
return arc_diagrams
|
| 148 |
-
##################################################################################################################################
|
| 149 |
-
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
def perform_advanced_morphosyntactic_analysis(text, nlp):
|
|
|
|
|
|
|
|
|
|
| 152 |
doc = nlp(text)
|
| 153 |
return {
|
| 154 |
'pos_analysis': get_detailed_pos_analysis(doc),
|
| 155 |
'morphological_analysis': get_morphological_analysis(doc),
|
| 156 |
'sentence_structure': get_sentence_structure_analysis(doc),
|
| 157 |
-
'
|
| 158 |
-
'repeated_words': get_repeated_words_colors(doc)
|
| 159 |
}
|
| 160 |
-
|
| 161 |
-
|
|
|
|
|
|
| 1 |
import spacy
|
| 2 |
+
from collections import Counter
|
| 3 |
from spacy import displacy
|
| 4 |
+
import re
|
| 5 |
from streamlit.components.v1 import html
|
| 6 |
import base64
|
| 7 |
|
|
|
|
| 90 |
}
|
| 91 |
}
|
| 92 |
|
| 93 |
+
#############################################################################################
|
| 94 |
+
def get_repeated_words_colors(doc):
|
| 95 |
+
word_counts = Counter(token.text.lower() for token in doc if token.pos_ != 'PUNCT')
|
| 96 |
+
repeated_words = {word: count for word, count in word_counts.items() if count > 1}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
word_colors = {}
|
| 99 |
+
for token in doc:
|
| 100 |
+
if token.text.lower() in repeated_words:
|
| 101 |
+
word_colors[token.text.lower()] = POS_COLORS.get(token.pos_, '#FFFFFF')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
+
return word_colors
|
| 104 |
+
|
| 105 |
+
######################################################################################################
|
| 106 |
+
def highlight_repeated_words(doc, word_colors):
|
| 107 |
+
highlighted_text = []
|
| 108 |
+
for token in doc:
|
| 109 |
+
if token.text.lower() in word_colors:
|
| 110 |
+
color = word_colors[token.text.lower()]
|
| 111 |
+
highlighted_text.append(f'<span style="background-color: {color};">{token.text}</span>')
|
| 112 |
+
else:
|
| 113 |
+
highlighted_text.append(token.text)
|
| 114 |
+
return ' '.join(highlighted_text)
|
| 115 |
+
|
| 116 |
+
#################################################################################################
|
| 117 |
+
def generate_arc_diagram(doc, lang_code):
|
| 118 |
+
sentences = list(doc.sents)
|
| 119 |
+
arc_diagrams = []
|
| 120 |
+
for sent in sentences:
|
| 121 |
+
html = displacy.render(sent, style="dep", options={"distance": 100})
|
| 122 |
+
html = html.replace('height="375"', 'height="200"')
|
| 123 |
+
html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html)
|
| 124 |
+
html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', lambda m: f'<g transform="translate({m.group(1)},50)"', html)
|
| 125 |
arc_diagrams.append(html)
|
| 126 |
return arc_diagrams
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
#################################################################################################
|
| 129 |
+
def get_detailed_pos_analysis(doc):
|
| 130 |
+
"""
|
| 131 |
+
Realiza un análisis detallado de las categorías gramaticales (POS) en el texto.
|
| 132 |
+
"""
|
| 133 |
+
pos_counts = Counter(token.pos_ for token in doc)
|
| 134 |
+
total_tokens = len(doc)
|
| 135 |
+
pos_analysis = []
|
| 136 |
+
for pos, count in pos_counts.items():
|
| 137 |
+
percentage = (count / total_tokens) * 100
|
| 138 |
+
pos_analysis.append({
|
| 139 |
+
'pos': pos,
|
| 140 |
+
'count': count,
|
| 141 |
+
'percentage': round(percentage, 2),
|
| 142 |
+
'examples': [token.text for token in doc if token.pos_ == pos][:5] # Primeros 5 ejemplos
|
| 143 |
+
})
|
| 144 |
+
return sorted(pos_analysis, key=lambda x: x['count'], reverse=True)
|
| 145 |
+
|
| 146 |
+
#################################################################################################
|
| 147 |
+
def get_morphological_analysis(doc):
|
| 148 |
+
"""
|
| 149 |
+
Realiza un análisis morfológico detallado de las palabras en el texto.
|
| 150 |
+
"""
|
| 151 |
+
morphology_analysis = []
|
| 152 |
+
for token in doc:
|
| 153 |
+
if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']: # Enfocarse en categorías principales
|
| 154 |
+
morphology_analysis.append({
|
| 155 |
+
'text': token.text,
|
| 156 |
+
'lemma': token.lemma_,
|
| 157 |
+
'pos': token.pos_,
|
| 158 |
+
'tag': token.tag_,
|
| 159 |
+
'dep': token.dep_,
|
| 160 |
+
'shape': token.shape_,
|
| 161 |
+
'is_alpha': token.is_alpha,
|
| 162 |
+
'is_stop': token.is_stop,
|
| 163 |
+
'morph': str(token.morph)
|
| 164 |
+
})
|
| 165 |
+
return morphology_analysis
|
| 166 |
+
|
| 167 |
+
#################################################################################################
|
| 168 |
+
def get_sentence_structure_analysis(doc):
|
| 169 |
+
"""
|
| 170 |
+
Analiza la estructura de las oraciones en el texto.
|
| 171 |
+
"""
|
| 172 |
+
sentence_analysis = []
|
| 173 |
+
for sent in doc.sents:
|
| 174 |
+
sentence_analysis.append({
|
| 175 |
+
'text': sent.text,
|
| 176 |
+
'root': sent.root.text,
|
| 177 |
+
'root_pos': sent.root.pos_,
|
| 178 |
+
'num_tokens': len(sent),
|
| 179 |
+
'num_words': len([token for token in sent if token.is_alpha]),
|
| 180 |
+
'subjects': [token.text for token in sent if "subj" in token.dep_],
|
| 181 |
+
'objects': [token.text for token in sent if "obj" in token.dep_],
|
| 182 |
+
'verbs': [token.text for token in sent if token.pos_ == "VERB"]
|
| 183 |
+
})
|
| 184 |
+
return sentence_analysis
|
| 185 |
+
|
| 186 |
+
#################################################################################################
|
| 187 |
def perform_advanced_morphosyntactic_analysis(text, nlp):
|
| 188 |
+
"""
|
| 189 |
+
Realiza un análisis morfosintáctico avanzado del texto.
|
| 190 |
+
"""
|
| 191 |
doc = nlp(text)
|
| 192 |
return {
|
| 193 |
'pos_analysis': get_detailed_pos_analysis(doc),
|
| 194 |
'morphological_analysis': get_morphological_analysis(doc),
|
| 195 |
'sentence_structure': get_sentence_structure_analysis(doc),
|
| 196 |
+
'arc_diagram': generate_arc_diagram(doc, nlp.lang)
|
|
|
|
| 197 |
}
|
| 198 |
+
|
| 199 |
+
# Al final del archivo morph_analysis.py
|
| 200 |
+
__all__ = ['get_repeated_words_colors', 'highlight_repeated_words', 'generate_arc_diagram', 'perform_advanced_morphosyntactic_analysis', 'POS_COLORS', 'POS_TRANSLATIONS']
|