Spaces:
Running
Running
File size: 3,190 Bytes
2f72c5e b120055 2f72c5e 2e72af1 2f72c5e ae47f31 2f72c5e 3273793 2f72c5e e66997b eebd998 2718e48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import os
import subprocess
from pathlib import Path
from PIL import Image
import streamlit as st
import urllib.request
from PIL import Image,ImageFile
import streamlit as st
import numpy as np
import requests
from io import BytesIO
# ---- CONFIG ----
st.set_page_config(
page_title="Streamlit iCodeIdoia",
page_icon="images/ilpicon1.png",
layout="wide",
initial_sidebar_state="expanded"
)
st.image("images/banner.jpg")
# ---- PATHS ----
FRAME1 = Path("demo/frame1.png")
FRAME2 = Path("demo/frame2.png")
TARGET_DIR = Path("/home/user/app/output/")
PALETTE_PNG = TARGET_DIR / "palette.png"
OUTPUT_GIF = TARGET_DIR / "output.gif"
os.makedirs(TARGET_DIR, exist_ok=True)
# ---- FUNCTION ----
def load_description(path: str) -> str:
return Path(path).read_text(encoding="utf-8")
def interpolate_image(img_a_path: str, img_b_path: str) -> str:
subprocess.run([
"python3", "inference_img.py",
"--img", str(img_a_path), str(img_b_path),
"--exp", "4"
], check=True)
subprocess.run([
"ffmpeg", "-y", "-r", "14", "-f", "image2",
"-i", f"{TARGET_DIR}/img%d.png",
"-vf", "palettegen=stats_mode=single",
"-frames:v", "1",
str(PALETTE_PNG)
], check=True)
subprocess.run([
"ffmpeg", "-y", "-r", "14", "-f", "image2",
"-i", f"{TARGET_DIR}/img%d.png",
"-i", str(PALETTE_PNG),
"-lavfi", "paletteuse",
str(OUTPUT_GIF)
], check=True)
return str(OUTPUT_GIF)
st.markdown(load_description("TITLE.md"), unsafe_allow_html=True)
# ---- TABS ----
tab1, tab2 = st.tabs(["Demo", "Upload your images"])
with tab1:
st.subheader("Demo: Preloaded images")
st.image(str(FRAME1), caption="Image A")
st.image(str(FRAME2), caption="Image B")
if st.button("Run Interpolation Demo"):
gif_path = interpolate_image(FRAME1, FRAME2)
st.image(gif_path, caption="Interpolated GIF")
#st.text(f"Output path: {gif_path}")
with tab2:
st.subheader("Upload any two images")
uploaded_a = st.file_uploader("Upload Image A", type=["png", "jpg", "jpeg"])
uploaded_b = st.file_uploader("Upload Image B", type=["png", "jpg", "jpeg"])
if uploaded_a and uploaded_b:
temp_a = TARGET_DIR / "user_a.png"
temp_b = TARGET_DIR / "user_b.png"
Image.open(uploaded_a).save(temp_a)
Image.open(uploaded_b).save(temp_b)
if st.button("Run Interpolation"):
gif_path = interpolate_image(temp_a, temp_b)
st.image(gif_path, caption="Interpolated GIF")
st.text("Note: the visual noise is not present when you savee the image. Occurs in streamlit not in gradio demo app.")
#st.text(f"Output path: {gif_path}")
st.markdown("""<div style="margin: 0.75em 0;"><a href="https://www.buymeacoffee.com/Artgen" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/default-orange.png" alt="Buy Me A Coffee" height="41" width="174"></a></div>
<div style="margin: 0.75em 0;">But what would really help me is a <strong>PRO subscription</strong> to Google Colab, Kaggle or Hugging Face. Many thanks.</div>""", unsafe_allow_html=True)
|