ALChad's picture
Update app.py
47a60a5 verified
raw
history blame
8.15 kB
# app.py (Final version)
import os
import gradio as gr
import requests
import pandas as pd
import base64
import json
import operator
from typing import Annotated, List, TypedDict
from dotenv import load_dotenv
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.tools import tool
from langchain_google_genai import ChatGoogleGenerativeAI
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
API_BASE_URL = "https://agents-course-unit4-scoring.hf.space"
class GaiaLangGraphAgent:
def __init__(self):
print("Initializing GaiaLangGraphAgent...")
load_dotenv()
class AgentState(TypedDict):
question: str
intermediate_steps: Annotated[List[BaseMessage], operator.add]
self.AgentState = AgentState
web_search_tool = TavilySearchResults(max_results=4)
@tool
def calculator(expression: str) -> str:
"""Evaluates a simple mathematical expression."""
try:
import numexpr
return str(numexpr.evaluate(expression).item())
except Exception as e: return f"Error: {e}"
llm_vision = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest")
def get_file_path(file_name: str) -> str:
if not os.path.exists("task_files"): os.makedirs("task_files")
return os.path.join("task_files", file_name)
@tool
def file_reader(file_name: str) -> str:
"""Reads a file, downloading if necessary. Handles text and images."""
local_path = get_file_path(file_name)
if not os.path.exists(local_path):
download_url = f"{API_BASE_URL}/files/{file_name}"
print(f"Downloading: {download_url}")
try:
response = requests.get(download_url); response.raise_for_status()
with open(local_path, "wb") as f: f.write(response.content)
except Exception as e: return f"Error downloading {file_name}: {e}"
try:
if any(file_name.lower().endswith(ext) for ext in ['.png', '.jpg', '.jpeg', '.webp']):
with open(local_path, "rb") as image_file: b64_image = base64.b64encode(image_file.read()).decode('utf-8')
vision_prompt = HumanMessage(content=[
{"type": "text", "text": "Describe this image in detail, focusing on text or identifiable objects."},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_image}"}}
])
return llm_vision.invoke([vision_prompt]).content
else:
with open(local_path, 'r', encoding='utf-8') as f: return f.read()
except Exception as e: return f"Error processing {file_name}: {e}"
tools = [web_search_tool, file_reader, calculator]
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest", temperature=0, convert_system_message_to_human=True)
llm_with_tools = llm.bind_tools(tools)
planner_prompt = ChatPromptTemplate.from_messages([
("system", """You are a world-class AI assistant.
**Principles:** 1. Analyze the question for nuances. 2. Create multi-step plans. 3. Use tools intelligently (search, file read, calculator) or solve logic puzzles directly. 4. Provide exact-match answers.
**Execution:** Loop through plan->act cycles until you have the final answer."""),
("human", "{question}\n\n{intermediate_steps}"),
])
def planner_node(state: AgentState):
print("\n---PLANNER---")
chain = planner_prompt | llm_with_tools
response = chain.invoke(state)
print(f"Planner decision: {'Tool call' if response.tool_calls else 'Final Answer'}")
return {'intermediate_steps': [response]}
tool_node = ToolNode(tools)
def should_continue(state: AgentState):
last_message = state['intermediate_steps'][-1]
if isinstance(last_message, AIMessage):
if len(getattr(last_message, "tool_calls", [])) > 0: return "action"
return END
workflow = StateGraph(AgentState)
workflow.add_node("planner", planner_node)
workflow.add_node("action", tool_node)
workflow.set_entry_point("planner")
workflow.add_conditional_edges("planner", should_continue)
workflow.add_edge("action", "planner")
self.app = workflow.compile()
print("GaiaLangGraphAgent initialized successfully.")
def __call__(self, question: str) -> str:
print(f"\n>>>>>> AGENT EXECUTING FOR QUESTION: {question[:70]}...")
initial_state = {"question": question, "intermediate_steps": []}
final_state = self.app.invoke(initial_state, config={"recursion_limit": 15})
final_answer = final_state["intermediate_steps"][-1].content
print(f"<<<<<< AGENT FINISHED. FINAL ANSWER: {final_answer}")
return final_answer
def run_and_submit_all(profile: gr.OAuthProfile | None):
if not profile: return "Please Login to Hugging Face with the button first.", None
space_id = os.getenv("SPACE_ID")
if not space_id: return "CRITICAL ERROR: SPACE_ID not found. Run this from a deployed Hugging Face Space.", None
username = profile.username
print(f"User logged in: {username}")
questions_url = f"{API_BASE_URL}/questions"
submit_url = f"{API_BASE_URL}/submit"
try:
agent = GaiaLangGraphAgent()
except Exception as e: return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=20); response.raise_for_status()
questions_data = response.json()
except Exception as e: return f"Error fetching questions: {e}", None
results_log, answers_payload = [], []
print(f"Running agent on {len(questions_data)} questions. This may take several minutes...")
for item in questions_data:
task_id, question_text = item.get("task_id"), item.get("question")
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
print(f"Submitting {len(answers_payload)} answers...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60); response.raise_for_status()
result_data = response.json()
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\n"
f"Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)")
return final_status, pd.DataFrame(results_log)
except Exception as e: return f"Submission Failed: {e}", pd.DataFrame(results_log)
with gr.Blocks() as demo:
gr.Markdown("# GAIA - Advanced Agent Runner")
gr.Markdown("Log in and click 'Run' to evaluate the agent.")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("Launching Gradio Interface...")
demo.launch()