Spaces:
Sleeping
Sleeping
# app.py (Final version) | |
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
import base64 | |
import json | |
import operator | |
from typing import Annotated, List, TypedDict | |
from dotenv import load_dotenv | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.tools import tool | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langgraph.graph import END, StateGraph | |
from langgraph.prebuilt import ToolNode | |
API_BASE_URL = "https://agents-course-unit4-scoring.hf.space" | |
class GaiaLangGraphAgent: | |
def __init__(self): | |
print("Initializing GaiaLangGraphAgent...") | |
load_dotenv() | |
class AgentState(TypedDict): | |
question: str | |
intermediate_steps: Annotated[List[BaseMessage], operator.add] | |
self.AgentState = AgentState | |
web_search_tool = TavilySearchResults(max_results=4) | |
def calculator(expression: str) -> str: | |
"""Evaluates a simple mathematical expression.""" | |
try: | |
import numexpr | |
return str(numexpr.evaluate(expression).item()) | |
except Exception as e: return f"Error: {e}" | |
llm_vision = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest") | |
def get_file_path(file_name: str) -> str: | |
if not os.path.exists("task_files"): os.makedirs("task_files") | |
return os.path.join("task_files", file_name) | |
def file_reader(file_name: str) -> str: | |
"""Reads a file, downloading if necessary. Handles text and images.""" | |
local_path = get_file_path(file_name) | |
if not os.path.exists(local_path): | |
download_url = f"{API_BASE_URL}/files/{file_name}" | |
print(f"Downloading: {download_url}") | |
try: | |
response = requests.get(download_url); response.raise_for_status() | |
with open(local_path, "wb") as f: f.write(response.content) | |
except Exception as e: return f"Error downloading {file_name}: {e}" | |
try: | |
if any(file_name.lower().endswith(ext) for ext in ['.png', '.jpg', '.jpeg', '.webp']): | |
with open(local_path, "rb") as image_file: b64_image = base64.b64encode(image_file.read()).decode('utf-8') | |
vision_prompt = HumanMessage(content=[ | |
{"type": "text", "text": "Describe this image in detail, focusing on text or identifiable objects."}, | |
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_image}"}} | |
]) | |
return llm_vision.invoke([vision_prompt]).content | |
else: | |
with open(local_path, 'r', encoding='utf-8') as f: return f.read() | |
except Exception as e: return f"Error processing {file_name}: {e}" | |
tools = [web_search_tool, file_reader, calculator] | |
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest", temperature=0, convert_system_message_to_human=True) | |
llm_with_tools = llm.bind_tools(tools) | |
planner_prompt = ChatPromptTemplate.from_messages([ | |
("system", """You are a world-class AI assistant. | |
**Principles:** 1. Analyze the question for nuances. 2. Create multi-step plans. 3. Use tools intelligently (search, file read, calculator) or solve logic puzzles directly. 4. Provide exact-match answers. | |
**Execution:** Loop through plan->act cycles until you have the final answer."""), | |
("human", "{question}\n\n{intermediate_steps}"), | |
]) | |
def planner_node(state: AgentState): | |
print("\n---PLANNER---") | |
chain = planner_prompt | llm_with_tools | |
response = chain.invoke(state) | |
print(f"Planner decision: {'Tool call' if response.tool_calls else 'Final Answer'}") | |
return {'intermediate_steps': [response]} | |
tool_node = ToolNode(tools) | |
def should_continue(state: AgentState): | |
last_message = state['intermediate_steps'][-1] | |
if isinstance(last_message, AIMessage): | |
if len(getattr(last_message, "tool_calls", [])) > 0: return "action" | |
return END | |
workflow = StateGraph(AgentState) | |
workflow.add_node("planner", planner_node) | |
workflow.add_node("action", tool_node) | |
workflow.set_entry_point("planner") | |
workflow.add_conditional_edges("planner", should_continue) | |
workflow.add_edge("action", "planner") | |
self.app = workflow.compile() | |
print("GaiaLangGraphAgent initialized successfully.") | |
def __call__(self, question: str) -> str: | |
print(f"\n>>>>>> AGENT EXECUTING FOR QUESTION: {question[:70]}...") | |
initial_state = {"question": question, "intermediate_steps": []} | |
final_state = self.app.invoke(initial_state, config={"recursion_limit": 15}) | |
final_answer = final_state["intermediate_steps"][-1].content | |
print(f"<<<<<< AGENT FINISHED. FINAL ANSWER: {final_answer}") | |
return final_answer | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
if not profile: return "Please Login to Hugging Face with the button first.", None | |
space_id = os.getenv("SPACE_ID") | |
if not space_id: return "CRITICAL ERROR: SPACE_ID not found. Run this from a deployed Hugging Face Space.", None | |
username = profile.username | |
print(f"User logged in: {username}") | |
questions_url = f"{API_BASE_URL}/questions" | |
submit_url = f"{API_BASE_URL}/submit" | |
try: | |
agent = GaiaLangGraphAgent() | |
except Exception as e: return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=20); response.raise_for_status() | |
questions_data = response.json() | |
except Exception as e: return f"Error fetching questions: {e}", None | |
results_log, answers_payload = [], [] | |
print(f"Running agent on {len(questions_data)} questions. This may take several minutes...") | |
for item in questions_data: | |
task_id, question_text = item.get("task_id"), item.get("question") | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload} | |
print(f"Submitting {len(answers_payload)} answers...") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60); response.raise_for_status() | |
result_data = response.json() | |
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\n" | |
f"Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)") | |
return final_status, pd.DataFrame(results_log) | |
except Exception as e: return f"Submission Failed: {e}", pd.DataFrame(results_log) | |
with gr.Blocks() as demo: | |
gr.Markdown("# GAIA - Advanced Agent Runner") | |
gr.Markdown("Log in and click 'Run' to evaluate the agent.") | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) | |
if __name__ == "__main__": | |
print("Launching Gradio Interface...") | |
demo.launch() |