|
import gradio as gr |
|
|
|
from exposure_enhancement import enhance_image_exposure |
|
|
|
|
|
inputs=[ |
|
gr.Image(type="numpy"), |
|
gr.Slider(minimum=0, maximum=1, value=0.6, label="Gamma", info="The gamma correction parameter."), |
|
gr.Slider(minimum=0, maximum=1, value=0.15, label="Lambda", info="The weight for balancing the two terms in the illumination refinement optimization objective."), |
|
gr.Number(value=3, minimum=0, label="Sigma", info="Spatial standard deviation for spatial affinity based Gaussian weights.") |
|
] |
|
outputs=["image"] |
|
examples=[ |
|
["demo/1.jpg", 0.6, 0.15, 3], |
|
["demo/2.bmp", 0.6, 0.15, 3] |
|
] |
|
|
|
def enhance_image(image, gamma, lambda_, sigma, lime=True, bc=1, bs=1, be=1, eps=1e-3): |
|
|
|
enhanced_image = enhance_image_exposure(image, gamma, lambda_, not lime, sigma=sigma, bc=bc, bs=bs, be=be, eps=eps) |
|
|
|
return enhanced_image |
|
|
|
|
|
iface = gr.Interface( |
|
fn=enhance_image, |
|
inputs=inputs, |
|
outputs=outputs, |
|
title=title, |
|
description=description, |
|
examples=examples |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
iface.launch(share=True) |
|
|