import gradio as gr # project from exposure_enhancement import enhance_image_exposure title="Low-light Image Enhancement" description=""" LIME: Low-Light Image Enhancement via Illumination Map Estimation IEEE TIP 2016 by Guo, Li, et al.: https://ieeexplore.ieee.org/document/7782813
Reference implementation: https://github.com/pvnieo/Low-light-Image-Enhancement
Adapted to Gradio by DIGIMAP Group 2: - BERNARDO, NOAH HALILI - DE NIEVA, JOHAN OSWIN CO - FERNANDEZ, MATTHEW NATHAN MANILA - GABINI, BRIAN PITALLO - YSABELLE CHLOE CHEN """ # inputs, fn, and ouputs inputs=[ gr.Image(type="numpy"), gr.Slider(minimum=0, maximum=1, value=0.6, label="Gamma", info="The gamma correction parameter."), gr.Slider(minimum=0, maximum=1, value=0.15, label="Lambda", info="The weight for balancing the two terms in the illumination refinement optimization objective."), gr.Number(value=3, minimum=0, label="Sigma", info="Spatial standard deviation for spatial affinity based Gaussian weights.") ], outputs=["image"], examples=[["demo/1.jpg"], ["demo/2.bmp"]] def enhance_image(image, gamma, lambda_, sigma, lime=True, bc=1, bs=1, be=1, eps=1e-3): # enhance image enhanced_image = enhance_image_exposure(image, gamma, lambda_, not lime, sigma=sigma, bc=bc, bs=bs, be=be, eps=eps) return enhanced_image iface = gr.Interface( fn=enhance_image, inputs=inputs, outputs=outputs, title=title, description=description, examples=examples ) if __name__ == "__main__": iface.launch()