Spaces:
Running
Running
Commit
·
d5d0fa7
1
Parent(s):
1f434d6
files uploaded
Browse files- app.py +91 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import io
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
from torchvision import transforms
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from pytorch_msssim import ms_ssim
|
10 |
+
|
11 |
+
# loading the models
|
12 |
+
from compressai.zoo import bmshj2018_factorized
|
13 |
+
from compressai.zoo import bmshj2018_hyperprior
|
14 |
+
from compressai.zoo import cheng2020_anchor
|
15 |
+
|
16 |
+
import gradio as gr
|
17 |
+
|
18 |
+
# function to compress the image
|
19 |
+
def image_compress(input_img):
|
20 |
+
# removing the file from folder
|
21 |
+
|
22 |
+
folder_path = "./result/"
|
23 |
+
file_name = "compressed.jpg"
|
24 |
+
|
25 |
+
file_path = os.path.join(folder_path, file_name)
|
26 |
+
# checking the compressed file exist or not
|
27 |
+
if file_path:
|
28 |
+
try:
|
29 |
+
os.remove(file_path)
|
30 |
+
print(f"File {file_name} deleted successfully.")
|
31 |
+
except OSError as e:
|
32 |
+
# print(f"Error: {file_path} - {e.strerror}")
|
33 |
+
pass
|
34 |
+
|
35 |
+
# checking the device
|
36 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
37 |
+
|
38 |
+
net = bmshj2018_factorized(quality=1, pretrained=True).eval().to(device)
|
39 |
+
|
40 |
+
print(f'Parameters: {sum(p.numel() for p in net.parameters())}')
|
41 |
+
|
42 |
+
# img = Image.open(input_img).convert('RGB')
|
43 |
+
img = input_img.convert('RGB')
|
44 |
+
x = transforms.ToTensor()(img).unsqueeze(0).to(device)
|
45 |
+
|
46 |
+
with torch.no_grad():
|
47 |
+
out_net = net.forward(x)
|
48 |
+
out_net['x_hat'].clamp_(0, 1)
|
49 |
+
|
50 |
+
rec_net = transforms.ToPILImage()(out_net['x_hat'].squeeze().cpu())
|
51 |
+
|
52 |
+
rec_net.save("./result/compressed.jpg")
|
53 |
+
|
54 |
+
output_image = "./result/compressed.jpg"
|
55 |
+
|
56 |
+
# print("Your input image path is:::")
|
57 |
+
# print(input_img.name)
|
58 |
+
|
59 |
+
# Split the file path into components
|
60 |
+
# components = input_img.split('/')
|
61 |
+
|
62 |
+
# Get the last component (file name and extension)
|
63 |
+
# file_name_with_extension = components[-1]
|
64 |
+
|
65 |
+
# Split the file name and extension using rsplit()
|
66 |
+
# file_name, file_extension = file_name_with_extension.rsplit('.', 1)
|
67 |
+
|
68 |
+
# rec_net.save("./result/"+file_name+".jpg")
|
69 |
+
|
70 |
+
# output_image = "./result/" + file_name + ".jpg"
|
71 |
+
|
72 |
+
# calculatinig the reduction size
|
73 |
+
# file_size_bytes1 = os.path.getsize(input_img)
|
74 |
+
# file_size_bytes2 = os.path.getsize(output_image)
|
75 |
+
# file_size_mb1 = file_size_bytes1 / 1000000
|
76 |
+
# file_size_mb2 = file_size_bytes2 / 1000000
|
77 |
+
# final_percent = ((file_size_mb1 - file_size_mb2) / file_size_mb1) * 100
|
78 |
+
|
79 |
+
return output_image, output_image
|
80 |
+
|
81 |
+
# defining the components the inference
|
82 |
+
input_component = gr.Image(type="pil")
|
83 |
+
output_component = [gr.Image(type="pil"), gr.File(label="Download", extension=".png")]
|
84 |
+
|
85 |
+
interface = gr.Interface(
|
86 |
+
fn=image_compress,
|
87 |
+
inputs=input_component,
|
88 |
+
outputs=output_component
|
89 |
+
)
|
90 |
+
|
91 |
+
interface.launch()
|
requirements.txt
ADDED
File without changes
|