nsfw / app.py
csuer's picture
Update app.py
5e1c248
import gradio as gr
import torch
import threading
import torch.nn as nn
from torchvision import transforms
from torchvision.models import resnet18, ResNet18_Weights
from PIL import Image
# number convert to label
labels = ["drawings", "hentai", "neutral", "porn", "sexy"]
description = f"""This is a demo of classifing nsfw pictures. Label division is based on the following:
[*https://github.com/alex000kim/nsfw_data_scraper*](https://github.com/alex000kim/nsfw_data_scraper).
You can continue to train this model with the same preprocess-to-images.
Finally, welcome to star my [*github repository*](https://github.com/csuer411/nsfw_classify)"""
# define CNN model
class Classifier(nn.Module):
def __init__(self):
super(Classifier, self).__init__()
self.cnn_layers = resnet18(weights=ResNet18_Weights)
self.fc_layers = nn.Sequential(
nn.Linear(1000, 512),
nn.Dropout(0.3),
nn.Linear(512, 128),
nn.ReLU(),
nn.Linear(128, 5),
)
def forward(self, x):
# Extract features by convolutional layers.
x = self.cnn_layers(x)
x = self.fc_layers(x)
return x
# pre-process
preprocess = transforms.Compose(
[
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
# load model
model = Classifier()
model.load_state_dict(torch.load("classify_nsfw_v3.0.pth", map_location="cpu"))
model.eval()
def predict(inp):
inp = preprocess(inp).unsqueeze(0)
with torch.no_grad():
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
result = {labels[i]: float(prediction[i]) for i in range(5)}
return result
inputs = gr.Image(type='pil')
outputs = gr.Label(num_top_classes=2)
gr.Interface(
fn=predict, inputs=inputs, outputs=outputs, examples=["./example/anime.jpg", "./example/real.jpg"], description=description,
).launch()