|
import torch |
|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
|
|
question_answer = pipeline("question-answering", model="deepset/roberta-base-squad2") |
|
|
|
def read_file_content(file_obj): |
|
""" |
|
Reads the content of a file object, cleans it, and returns it. |
|
""" |
|
try: |
|
with open(file_obj.name, 'r', encoding='utf-8') as file: |
|
context = file.read().strip() |
|
return context |
|
except Exception as e: |
|
return f"An error occurred: {e}" |
|
|
|
def get_answer(file, question): |
|
context = read_file_content(file) |
|
if isinstance(context, str) and context.startswith("An error occurred"): |
|
return context |
|
|
|
if not question.strip(): |
|
return "Please provide a valid question." |
|
|
|
try: |
|
print(f"Context:\n{context}") |
|
print(f"Question: {question}") |
|
answer = question_answer(question=question, context=context) |
|
return answer["answer"] |
|
except Exception as e: |
|
return f"An error occurred during question answering: {e}" |
|
|
|
demo = gr.Interface( |
|
fn=get_answer, |
|
inputs=[gr.File(label="Upload your file"), gr.Textbox(label="Input your question", lines=1)], |
|
outputs=[gr.Textbox(label="Answer text", lines=1)], |
|
title="@GenAILearniverse Project 5: Document Q & A", |
|
description="This application answers questions based on the uploaded context file." |
|
) |
|
|
|
demo.launch() |
|
|