Muhammad Anas Akhtar
Update app.py
64ec002 verified
raw
history blame
5.07 kB
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
from transformers import pipeline
import cv2
import numpy as np
import tempfile
import os
# Initialize the object detection pipeline
object_detector = pipeline("object-detection",
model="facebook/detr-resnet-50")
def draw_bounding_boxes(frame, detections):
"""
Draws bounding boxes on the video frame based on the detections.
"""
# Convert numpy array to PIL Image
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(frame_rgb)
draw = ImageDraw.Draw(pil_image)
# Use default font
font = ImageFont.load_default()
for detection in detections:
box = detection['box']
xmin = int(box['xmin'])
ymin = int(box['ymin'])
xmax = int(box['xmax'])
ymax = int(box['ymax'])
# Draw the bounding box
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3)
# Create label with score
label = detection['label']
score = detection['score']
text = f"{label} {score:.2f}"
# Draw text with background rectangle for visibility
text_bbox = draw.textbbox((xmin, ymin), text, font=font)
draw.rectangle([
(text_bbox[0], text_bbox[1]),
(text_bbox[2], text_bbox[3])
], fill="red")
draw.text((xmin, ymin), text, fill="white", font=font)
# Convert back to numpy array
frame_with_boxes = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
return frame_with_boxes
def process_video(video_path, progress=gr.Progress()):
"""
Process the video file and return the path to the processed video
"""
try:
# Open the video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError("Could not open video file")
# Get video properties
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Create output video file
output_path = os.path.join(tempfile.gettempdir(), 'output_video.mp4')
# Initialize video writer with H264 codec
fourcc = cv2.VideoWriter_fourcc(*'avc1')
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
if not out.isOpened():
raise ValueError("Could not create output video file")
frame_count = 0
process_every_n_frames = 1 # Process every frame
progress(0, desc="Processing video...")
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
# Process frame
if frame_count % process_every_n_frames == 0:
# Convert frame to RGB for the model
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Detect objects
detections = object_detector(frame_rgb)
# Draw bounding boxes
frame = draw_bounding_boxes(frame, detections)
# Write the frame
out.write(frame)
# Update progress
progress((frame_count / total_frames), desc=f"Processing frame {frame_count}/{total_frames}")
# Release everything
cap.release()
out.release()
# Verify the output file exists and has size
if not os.path.exists(output_path) or os.path.getsize(output_path) == 0:
raise ValueError("Output video file is empty or was not created")
return output_path
except Exception as e:
print(f"Error processing video: {str(e)}")
raise gr.Error(f"Error processing video: {str(e)}")
def detect_objects_in_video(video):
"""
Gradio interface function for video object detection
"""
if video is None:
raise gr.Error("Please upload a video file")
try:
# Process the video
output_path = process_video(video)
return output_path
except Exception as e:
raise gr.Error(f"Error during video processing: {str(e)}")
# Create the Gradio interface
demo = gr.Interface(
fn=detect_objects_in_video,
inputs=[
gr.Video(label="Upload Video", format="mp4")
],
outputs=[
gr.Video(label="Processed Video", format="mp4")
],
title="@GenAILearniverse Project: Video Object Detection",
description="""
Upload a video to detect and track objects within it.
The application will process the video and draw bounding boxes around detected objects
with their labels and confidence scores.
Note: Processing may take some time depending on the video length.
""",
examples=[],
cache_examples=False
)
if __name__ == "__main__":
demo.launch()