Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,75 +2,55 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
from diffusers import AutoPipelineForText2Image, DDIMScheduler
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
# Initialize the pipeline
|
| 10 |
pipeline = AutoPipelineForText2Image.from_pretrained(
|
| 11 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 12 |
-
torch_dtype=torch.float16
|
|
|
|
| 13 |
)
|
| 14 |
-
|
| 15 |
-
# Configure the scheduler for the pipeline
|
| 16 |
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
|
| 17 |
|
| 18 |
-
|
| 19 |
-
pipeline.load_ip_adapter(
|
| 20 |
-
"h94/IP-Adapter",
|
| 21 |
-
subfolder="sdxl_models",
|
| 22 |
-
weight_name=[
|
| 23 |
-
"ip-adapter-plus_sdxl_vit-h.safetensors",
|
| 24 |
-
"ip-adapter-plus-face_sdxl_vit-h.safetensors"
|
| 25 |
-
]
|
| 26 |
-
)
|
| 27 |
pipeline.set_ip_adapter_scale([0.7, 0.5])
|
| 28 |
|
| 29 |
-
|
| 30 |
-
desired_size = (1024, 1024)
|
| 31 |
|
| 32 |
-
@spaces.
|
| 33 |
def transform_image(face_image):
|
| 34 |
-
|
| 35 |
-
pipeline.to("cuda")
|
| 36 |
-
generator = torch.Generator(device="cuda").manual_seed(0)
|
| 37 |
|
| 38 |
-
#
|
| 39 |
if isinstance(face_image, Image.Image):
|
| 40 |
processed_face_image = face_image
|
|
|
|
| 41 |
elif isinstance(face_image, np.ndarray):
|
| 42 |
processed_face_image = Image.fromarray(face_image)
|
| 43 |
else:
|
| 44 |
raise ValueError("Unsupported image format")
|
| 45 |
-
|
| 46 |
-
# Ensure the processed face image is in RGB format
|
| 47 |
-
processed_face_image = processed_face_image.convert('RGB')
|
| 48 |
-
|
| 49 |
-
# Resize the face image to 1024x1024
|
| 50 |
-
processed_face_image = processed_face_image.resize(desired_size, Image.LANCZOS)
|
| 51 |
|
| 52 |
-
# Load the style image from the local path
|
| 53 |
-
style_image_path = "
|
| 54 |
-
style_image = Image.open(style_image_path)
|
| 55 |
-
style_image_tensor = transforms.ToTensor()(style_image).unsqueeze(0).to("cuda")
|
| 56 |
-
|
| 57 |
-
# Convert the processed face image to tensor and move to GPU
|
| 58 |
-
processed_face_image_tensor = transforms.ToTensor()(processed_face_image).unsqueeze(0).to("cuda")
|
| 59 |
|
| 60 |
-
# Perform the transformation
|
| 61 |
image = pipeline(
|
| 62 |
prompt="soyjak",
|
| 63 |
-
ip_adapter_image=[
|
| 64 |
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
|
| 65 |
num_inference_steps=30,
|
| 66 |
generator=generator,
|
| 67 |
).images[0]
|
| 68 |
|
| 69 |
-
# Convert the tensor to a PIL Image to display it in Gradio
|
| 70 |
-
image = transforms.ToPILImage()(image.squeeze(0))
|
| 71 |
-
|
| 72 |
-
# Move the pipeline back to CPU after processing to release GPU resources
|
| 73 |
-
pipeline.to("cpu")
|
| 74 |
return image
|
| 75 |
|
| 76 |
# Gradio interface setup
|
|
@@ -79,8 +59,8 @@ demo = gr.Interface(
|
|
| 79 |
inputs=gr.Image(label="Upload your face image"),
|
| 80 |
outputs=gr.Image(label="Your Soyjak"),
|
| 81 |
title="InstaSoyjak - turn anyone into a Soyjak",
|
| 82 |
-
description="All you need to do is upload an image. Please use responsibly.",
|
| 83 |
)
|
| 84 |
|
| 85 |
-
demo.queue(max_size=20)
|
| 86 |
-
demo.launch()
|
|
|
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
from diffusers import AutoPipelineForText2Image, DDIMScheduler
|
| 5 |
+
from transformers import CLIPVisionModelWithProjection
|
| 6 |
import numpy as np
|
| 7 |
+
import spaces # Import ZeroGPU decorator
|
| 8 |
+
|
| 9 |
+
# Load models and configure pipeline
|
| 10 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
| 11 |
+
"h94/IP-Adapter",
|
| 12 |
+
subfolder="models/image_encoder",
|
| 13 |
+
torch_dtype=torch.float16,
|
| 14 |
+
)
|
| 15 |
|
|
|
|
| 16 |
pipeline = AutoPipelineForText2Image.from_pretrained(
|
| 17 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 18 |
+
torch_dtype=torch.float16,
|
| 19 |
+
image_encoder=image_encoder,
|
| 20 |
)
|
|
|
|
|
|
|
| 21 |
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
|
| 22 |
|
| 23 |
+
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name=["ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus-face_sdxl_vit-h.safetensors"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
pipeline.set_ip_adapter_scale([0.7, 0.5])
|
| 25 |
|
| 26 |
+
pipeline.enable_model_cpu_offload()
|
|
|
|
| 27 |
|
| 28 |
+
@spaces.ZeroGPU # Apply ZeroGPU decorator to the function
|
| 29 |
def transform_image(face_image):
|
| 30 |
+
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
# Check if the input is already a PIL Image
|
| 33 |
if isinstance(face_image, Image.Image):
|
| 34 |
processed_face_image = face_image
|
| 35 |
+
# If the input is a NumPy array, convert it to a PIL Image
|
| 36 |
elif isinstance(face_image, np.ndarray):
|
| 37 |
processed_face_image = Image.fromarray(face_image)
|
| 38 |
else:
|
| 39 |
raise ValueError("Unsupported image format")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
# Load the style image from the local path
|
| 42 |
+
style_image_path = "/content/soyjak2.jpeg"
|
| 43 |
+
style_image = Image.open(style_image_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
# Perform the transformation
|
| 46 |
image = pipeline(
|
| 47 |
prompt="soyjak",
|
| 48 |
+
ip_adapter_image=[style_image, processed_face_image],
|
| 49 |
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
|
| 50 |
num_inference_steps=30,
|
| 51 |
generator=generator,
|
| 52 |
).images[0]
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
return image
|
| 55 |
|
| 56 |
# Gradio interface setup
|
|
|
|
| 59 |
inputs=gr.Image(label="Upload your face image"),
|
| 60 |
outputs=gr.Image(label="Your Soyjak"),
|
| 61 |
title="InstaSoyjak - turn anyone into a Soyjak",
|
| 62 |
+
description="All you need to do is upload an image. Please use responsibly. Please follow me on Twitter if you like this space: https://twitter.com/angrypenguinPNG. Idea from Yacine, please give him a follow: https://twitter.com/yacineMTB.",
|
| 63 |
)
|
| 64 |
|
| 65 |
+
demo.queue(max_size=20) # Configures the queue with a maximum size of 20
|
| 66 |
+
demo.launch()
|