Spaces:
Runtime error
Runtime error
Delete hw3(1).py
Browse files- hw3 (1).py +0 -62
hw3 (1).py
DELETED
@@ -1,62 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""HW3.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colaboratory.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1H-R9L74rpYOoQJOnTLLbUpcNpd9Tty_D
|
8 |
-
"""
|
9 |
-
|
10 |
-
!wget http://vis-www.cs.umass.edu/lfw/lfw.tgz
|
11 |
-
!tar -xvf /content/lfw.tgz
|
12 |
-
import tensorflow as tf
|
13 |
-
from sklearn.datasets import load_sample_image
|
14 |
-
import os
|
15 |
-
import tensorflow.keras.applications.resnet50 as resnet50
|
16 |
-
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
|
17 |
-
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
18 |
-
import numpy as np
|
19 |
-
from PIL import Image
|
20 |
-
from sklearn.neighbors import NearestNeighbors
|
21 |
-
|
22 |
-
directory = '/content/lfw'
|
23 |
-
model = resnet50.ResNet50(weights='imagenet', include_top=False, pooling='avg')
|
24 |
-
feature_dict = {}
|
25 |
-
image_files = []
|
26 |
-
target_size = (224, 224)
|
27 |
-
i = 0
|
28 |
-
|
29 |
-
# Sample at most 2000 images because the whole entire dataset
|
30 |
-
# costs too much cpu power and ram
|
31 |
-
|
32 |
-
def preprocess_image(image_path, target_size):
|
33 |
-
img = load_img(os.path.join(directory,image_path),target_size=target_size)
|
34 |
-
x = img_to_array(img)
|
35 |
-
x = tf.expand_dims(x, axis = 0)
|
36 |
-
x = preprocess_input(x)
|
37 |
-
features = model.predict(x)
|
38 |
-
return features
|
39 |
-
|
40 |
-
for dir in os.listdir(directory):
|
41 |
-
i += 1
|
42 |
-
new_dir = '/content/lfw/'+dir
|
43 |
-
if os.path.isdir(new_dir):
|
44 |
-
for files in os.listdir(new_dir):
|
45 |
-
feature_dict[new_dir+'/'+files] = preprocess_image(new_dir+'/'+files, target_size).flatten()
|
46 |
-
if i >= 100:
|
47 |
-
break
|
48 |
-
|
49 |
-
for file, features in feature_dict.items():
|
50 |
-
print(file, features)
|
51 |
-
|
52 |
-
feature_map = np.array(list(feature_dict.values()))
|
53 |
-
|
54 |
-
NearNeigh = NearestNeighbors(n_neighbors=10,algorithm='auto').fit(feature_map)
|
55 |
-
|
56 |
-
for image_path in feature_dict:
|
57 |
-
img = feature_dict[image_path].reshape(1,-1)
|
58 |
-
distance,indices = NearNeigh.kneighbors(img)
|
59 |
-
print('Similar images for', image_path)
|
60 |
-
for i, index in enumerate(indices[0]):
|
61 |
-
similar_img_path = list(feature_dict.keys())[index]
|
62 |
-
print(i+1,similar_img_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|