APJ23 commited on
Commit
3690df0
·
1 Parent(s): b1b557e

added streamlit api

Browse files
Files changed (1) hide show
  1. app.py +25 -13
app.py CHANGED
@@ -6,9 +6,16 @@ Automatically generated by Colaboratory.
6
  Original file is located at
7
  https://colab.research.google.com/drive/1H-R9L74rpYOoQJOnTLLbUpcNpd9Tty_D
8
  """
 
 
 
 
9
 
10
- !wget http://vis-www.cs.umass.edu/lfw/lfw.tgz
11
- !tar -xvf /content/lfw.tgz
 
 
 
12
  import tensorflow as tf
13
  from sklearn.datasets import load_sample_image
14
  import os
@@ -42,21 +49,26 @@ for dir in os.listdir(directory):
42
  new_dir = '/content/lfw/'+dir
43
  if os.path.isdir(new_dir):
44
  for files in os.listdir(new_dir):
45
- feature_dict[new_dir+'/'+files] = preprocess_image(new_dir+'/'+files, target_size).flatten()
46
  if i >= 100:
47
  break
48
 
49
- for file, features in feature_dict.items():
50
- print(file, features)
51
 
52
  feature_map = np.array(list(feature_dict.values()))
53
 
54
  NearNeigh = NearestNeighbors(n_neighbors=10,algorithm='auto').fit(feature_map)
55
-
56
- for image_path in feature_dict:
57
- img = feature_dict[image_path].reshape(1,-1)
58
- distance,indices = NearNeigh.kneighbors(img)
59
- print('Similar images for', image_path)
60
- for i, index in enumerate(indices[0]):
61
- similar_img_path = list(feature_dict.keys())[index]
62
- print(i+1,similar_img_path)
 
 
 
 
 
 
6
  Original file is located at
7
  https://colab.research.google.com/drive/1H-R9L74rpYOoQJOnTLLbUpcNpd9Tty_D
8
  """
9
+ import streamlit as st
10
+ st.markdown("This is a image classification program, please enter the image that you would like to process.")
11
+ st.markdown("Please keep in mind that the dataset is very small (around 100-2000 imgs only")
12
+ path = ['Coretta_Scott_King','Saddam_Hussein','Augustin_Calleri','Peter_Hunt']
13
 
14
+ select_path = st.selectbox('Which of the three photos would you like to process', options = path)
15
+ st.write("You've select", select_path)
16
+
17
+ # !wget http://vis-www.cs.umass.edu/lfw/lfw.tgz
18
+ # !tar -xvf /content/lfw.tgz
19
  import tensorflow as tf
20
  from sklearn.datasets import load_sample_image
21
  import os
 
49
  new_dir = '/content/lfw/'+dir
50
  if os.path.isdir(new_dir):
51
  for files in os.listdir(new_dir):
52
+ feature_dict[dir] = preprocess_image(new_dir+'/'+files, target_size).flatten()
53
  if i >= 100:
54
  break
55
 
56
+ # for file, features in feature_dict.items():
57
+ # print(file, features)
58
 
59
  feature_map = np.array(list(feature_dict.values()))
60
 
61
  NearNeigh = NearestNeighbors(n_neighbors=10,algorithm='auto').fit(feature_map)
62
+ img = feature_dict[select_path].reshape(1,-1)
63
+ distance,indices = NearNeigh.kneighbors(img)
64
+ st.write('Similar images for', select_path)
65
+ for i,index in enumerate(indices[0]):
66
+ similar_img_path = list(feature.keys())[index]
67
+ print(i+1,similar_img_path)
68
+ # for image_path in feature_dict:
69
+ # img = feature_dict[image_path].reshape(1,-1)
70
+ # distance,indices = NearNeigh.kneighbors(img)
71
+ # print('Similar images for', image_path)
72
+ # for i, index in enumerate(indices[0]):
73
+ # similar_img_path = list(feature_dict.keys())[index]
74
+ # print(i+1,similar_img_path)