APJ23 commited on
Commit
16ad565
·
1 Parent(s): 197d2f5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -7
app.py CHANGED
@@ -2,17 +2,11 @@ import streamlit as st
2
  import pandas as pd
3
  import torch
4
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
5
- import csv
6
  import random as r
7
  import gradio as gr
8
 
9
  gr.Interface.load("models/APJ23/MultiHeaded_Sentiment_Analysis_Model").launch()
10
 
11
- with open('test.csv','r') as f:
12
- read = csv.reader(f)
13
- data = [row for row in read]
14
- df = pd.DataFrame(data[1:],columns=data[0])
15
- tweet = df['comment_text'][r.randint(0,1000)]
16
  tokenizer = AutoTokenizer.from_pretrained("APJ23/MultiHeaded_Sentiment_Analysis_Model", local_files_only=True)
17
  model = AutoModelForSequenceClassification.from_pretrained("APJ23/MultiHeaded_Sentiment_Analysis_Model")
18
 
@@ -43,7 +37,7 @@ def create_table(predictions):
43
  return df
44
 
45
  st.title('Toxicity Prediction App')
46
- st.write(f'The random tweet select is {tweet}',tweet)
47
  if st.button('Predict'):
48
  predicted_class_label, predicted_prob = predict_toxicity(tweet, model, tokenizer)
49
  prediction_text = f'Prediction: {predicted_class_label} ({predicted_prob:.2f})'
 
2
  import pandas as pd
3
  import torch
4
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
5
  import random as r
6
  import gradio as gr
7
 
8
  gr.Interface.load("models/APJ23/MultiHeaded_Sentiment_Analysis_Model").launch()
9
 
 
 
 
 
 
10
  tokenizer = AutoTokenizer.from_pretrained("APJ23/MultiHeaded_Sentiment_Analysis_Model", local_files_only=True)
11
  model = AutoModelForSequenceClassification.from_pretrained("APJ23/MultiHeaded_Sentiment_Analysis_Model")
12
 
 
37
  return df
38
 
39
  st.title('Toxicity Prediction App')
40
+ tweet=st.text_input('Enter a tweet to check for toxicity')
41
  if st.button('Predict'):
42
  predicted_class_label, predicted_prob = predict_toxicity(tweet, model, tokenizer)
43
  prediction_text = f'Prediction: {predicted_class_label} ({predicted_prob:.2f})'