Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import gradio as gr
|
|
| 3 |
import requests
|
| 4 |
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
-
from
|
| 7 |
from tools import DuckDuckGoSearchTool, WeatherInfoTool
|
| 8 |
|
| 9 |
# (Keep Constants as is)
|
|
@@ -16,7 +16,7 @@ class BasicAgent:
|
|
| 16 |
def __init__(self):
|
| 17 |
print("BasicAgent initialized.")
|
| 18 |
# Initialize the Hugging Face model
|
| 19 |
-
model =
|
| 20 |
|
| 21 |
# Initialize the web search tool
|
| 22 |
search_tool = DuckDuckGoSearchTool()
|
|
@@ -25,16 +25,18 @@ class BasicAgent:
|
|
| 25 |
weather_info_tool = WeatherInfoTool()
|
| 26 |
|
| 27 |
# Create agent
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
|
| 35 |
def __call__(self, question: str) -> str:
|
| 36 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 37 |
-
answer = self.agent.
|
| 38 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 39 |
return answer
|
| 40 |
|
|
|
|
| 3 |
import requests
|
| 4 |
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 7 |
from tools import DuckDuckGoSearchTool, WeatherInfoTool
|
| 8 |
|
| 9 |
# (Keep Constants as is)
|
|
|
|
| 16 |
def __init__(self):
|
| 17 |
print("BasicAgent initialized.")
|
| 18 |
# Initialize the Hugging Face model
|
| 19 |
+
model = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest")
|
| 20 |
|
| 21 |
# Initialize the web search tool
|
| 22 |
search_tool = DuckDuckGoSearchTool()
|
|
|
|
| 25 |
weather_info_tool = WeatherInfoTool()
|
| 26 |
|
| 27 |
# Create agent
|
| 28 |
+
tools = [search_tool, weather_info_tool]
|
| 29 |
+
self.agent= llm.bind_tools(tools)
|
| 30 |
+
#= CodeAgent(
|
| 31 |
+
# tools=[weather_info_tool, search_tool],
|
| 32 |
+
# model=model,
|
| 33 |
+
# add_base_tools=True, # Add any additional base tools
|
| 34 |
+
# planning_interval=3 # Enable planning every 3 steps
|
| 35 |
+
#)
|
| 36 |
|
| 37 |
def __call__(self, question: str) -> str:
|
| 38 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 39 |
+
answer = self.agent.invoke(question)
|
| 40 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 41 |
return answer
|
| 42 |
|