from smolagents import DuckDuckGoSearchTool from smolagents import Tool import random from huggingface_hub import list_models import requests from bs4 import BeautifulSoup import openpyxl import wikipedia class WikipediaTool(Tool): name = "wikipedia_api" description = "Returns the contents of a wikipedia article through a direct API call." inputs = { "title": { "type": "string", "description": "The title of the wikipedia article to retrieve." } } output_type = "string" def forward(self, title: str): page = wikipedia.page(title) return page.content class ExcelTool(Tool): name = "read_excel" description = "Returns the contents of an Excel file as a Pandas dataframe." inputs = { "filename": { "type": "string", "description": "The name of the Excel file to read." } } output_type = "string" def forward(self, question: str): search_tool = DuckDuckGoSearchTool() result = search_tool(question) return result class WebscraperTool(Tool): name = "webscraper" description = "Returns the page's html content from the input url." inputs = { "url": { "type": "string", "description": "The link of the web page to scrape." } } output_type = "string" def forward(self, url: str): response = requests.get(url, stream=True) if response.status_code == 200: soup = BeautifulSoup(response.content, 'html.parser') html_text = soup.get_text() return html_text else: raise Exception(f"Failed to retrieve the webpage. Status code: {response.status_code}") # Initialize the DuckDuckGo search tool class InternetSearchTool(Tool): name = "internet_search" description = "Searches the internet for the answer to any question input. Returns a long batch of textual information related to the query." inputs = { "question": { "type": "string", "description": "The question to retrieve an answer for." } } output_type = "string" def forward(self, question: str): search_tool = DuckDuckGoSearchTool() result = search_tool(question) return result class WeatherInfoTool(Tool): name = "weather_info" description = "Fetches dummy weather information for a given location." inputs = { "location": { "type": "string", "description": "The location to get weather information for." } } output_type = "string" def forward(self, location: str): # Dummy weather data weather_conditions = [ {"condition": "Rainy", "temp_c": 15}, {"condition": "Clear", "temp_c": 25}, {"condition": "Windy", "temp_c": 20} ] # Randomly select a weather condition data = random.choice(weather_conditions) return f"Weather in {location}: {data['condition']}, {data['temp_c']}°C" class HubStatsTool(Tool): name = "hub_stats" description = "Fetches the most downloaded model from a specific author on the Hugging Face Hub." inputs = { "author": { "type": "string", "description": "The username of the model author/organization to find models from." } } output_type = "string" def forward(self, author: str): try: # List models from the specified author, sorted by downloads models = list(list_models(author=author, sort="downloads", direction=-1, limit=1)) if models: model = models[0] return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads." else: return f"No models found for author {author}." except Exception as e: return f"Error fetching models for {author}: {str(e)}"