Spaces:
Sleeping
Sleeping
File size: 11,817 Bytes
e2599e3 2dc3ffd e2599e3 46b8bca dbc454d 46b8bca e2599e3 c001c3e e2599e3 46b8bca dbc454d e2599e3 46b8bca dbc454d 46b8bca dbc454d c001c3e 46b8bca e2599e3 46b8bca f6e1b1f 46b8bca 352c67b 46b8bca 352c67b 46b8bca dbc454d e2599e3 7ae7535 e2599e3 dbc454d e2599e3 7ae7535 ee6d9a4 7ae7535 46b8bca 352c67b f6e1b1f 46b8bca 352c67b 46b8bca 352c67b 46b8bca 352c67b 46b8bca 352c67b 46b8bca 7ae7535 e2599e3 dbc454d e2599e3 dbc454d e2599e3 7ae7535 ee6d9a4 7ae7535 e2599e3 7ae7535 dbc454d e2599e3 dbc454d e2599e3 dbc454d e2599e3 dbc454d e2599e3 7a64580 e2599e3 dbc454d e2599e3 1afd64c e2599e3 7ae7535 e2599e3 dbc454d e2599e3 dbc454d 7ae7535 e2599e3 46b8bca e2599e3 46b8bca e2599e3 c001c3e e2599e3 ef86a0e e2599e3 46b8bca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
#pip install langchain_google_genai langgraph gradio
import os
import sys
import typing
from typing import Annotated, Literal, Iterable
from typing_extensions import TypedDict
from langchain_google_genai import ChatGoogleGenerativeAI
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode
from langchain_core.tools import tool
from langchain_core.messages import AIMessage, ToolMessage, HumanMessage, BaseMessage, SystemMessage
from random import randint
import requests
from bs4 import BeautifulSoup
import openpyxl
import wikipedia
import pandas as pd
import gradio as gr
import logging
class OrderState(TypedDict):
"""State representing the customer's order conversation."""
messages: Annotated[list, add_messages]
order: list[str]
finished: bool
# System instruction for the Agent
SYSINT = (
"system",
"You are a general AI assistant. I will ask you a question."
"The question requires a tool to solve. You must attempt to use at least one of the available tools before returning an answer."
"Report your thoughts, and finish your answer with the following template: "
"FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings."
"If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise."
"If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise."
"If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."
"If a tool required for task completion is not functioning, return 0."
)
WELCOME_MSG = "Welcome to my general-purpose AI agent. Type `q` to quit. How shall I fail to serve you today?"
# Initialize the Google Gemini LLM
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest")
@tool
def wikipedia_search_tool(title: str) -> str:
"""Provides an excerpt from a Wikipedia article with the given title."""
page = wikipedia.page(title, auto_suggest=False)
return page.content[:3000]
@tool
def media_tool(file_path: str) -> str:
"""Used for deciphering video and audio files."""
return "This tool hasn't been implemented yet. Please return 0 if the task cannot be solved without knowing the contents of this file."
@tool
def internet_search_tool(search_query: str) -> str:
"""Does a google search with using the input as the search query. Returns a long batch of textual information related to the query."""
search_tool = DuckDuckGoSearchTool()
result = search_tool(search_query)
return result
@tool
def webscraper_tool(url: str) -> str:
"""Returns the page's html content from the input url."""
response = requests.get(url, stream=True)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
html_text = soup.get_text()
return html_text
else:
raise Exception(f"Failed to retrieve the webpage. Status code: {response.status_code}")
@tool
def read_excel_tool(file_path: str) -> str:
"""Returns the contents of an Excel file as a Pandas dataframe."""
df = pd.read_excel(file_path, engine = "openpyxl")
return df
def agent_node(state: OrderState) -> OrderState:
"""agent with tool handling."""
print(f"Messagelist sent to agent node: {[msg.content for msg in state.get('messages', [])]}")
defaults = {"order": [], "finished": False}
# Ensure we always have at least a system message
if not state.get("messages", []):
return defaults | state | {"messages": [SystemMessage(content=SYSINT), new_output]}
try:
# Prepend system instruction if not already present
messages_with_system = [
SystemMessage(content=SYSINT)
] + state.get("messages", [])
# Process messages through the LLM
new_output = llm_with_tools.invoke(messages_with_system)
return defaults | state | {"messages": [new_output]}
except Exception as e:
# Fallback if LLM processing fails
return defaults | state | {"messages": [AIMessage(content=f"I'm having trouble processing that. {str(e)}")]}
def interactive_tools_node(state: OrderState) -> OrderState:
"""Handles interactive tool calls."""
logging.info("interactive tools node")
tool_msg = state.get("messages", [])[-1]
order = state.get("order", [])
outbound_msgs = []
for tool_call in tool_msg.tool_calls:
tool_name = tool_call["name"]
tool_args = tool_call["args"]
if tool_name == "wikipedia_search_tool":
print(f"called wikipedia with {str(tool_args)}")
page = wikipedia.page(tool_args.get("title"), auto_suggest=False)
response = page.content[:3000]
elif tool_name == "media_tool":
print(f"called media with {str(tool_args)}")
response = "This tool hasn't been implemented yet. Please return 0 if the task cannot be solved without knowing the contents of this file."
elif tool_name == "internet_search_tool":
print(f"called internet with {str(tool_args)}")
question = tool_args.get("search_query")
search_tool = DuckDuckGoSearchTool()
response = search_tool(question)[:3000]
elif tool_name == "webscraper_tool":
print(f"called webscraper with {str(tool_args)}")
url = tool_args.get("url")
response = requests.get(url, stream=True)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
html_text = soup.get_text()
response = html_text
else:
response = Exception(f"Failed to retrieve the webpage. Status code: {response.status_code}")
elif tool_name == "read_excel_tool":
print(f"called excel with {str(tool_args)}")
path = tool_args.get("file_path")
df = pd.read_excel(path, engine = "openpyxl")
response = df
else:
raise NotImplementedError(f'Unknown tool call: {tool_name}')
outbound_msgs.append(
ToolMessage(
content=response,
name=tool_name,
tool_call_id=tool_call["id"],
)
)
return {"messages": outbound_msgs, "order": order, "finished": False}
def maybe_route_to_tools(state: OrderState) -> str:
"""Route between chat and tool nodes."""
if not (msgs := state.get("messages", [])):
raise ValueError(f"No messages found when parsing state: {state}")
msg = msgs[-1]
if state.get("finished", False):
print("from agent GOTO End node")
return END
elif hasattr(msg, "tool_calls") and len(msg.tool_calls) > 0:
if any(tool["name"] in tool_node.tools_by_name.keys() for tool in msg.tool_calls):
print("from agent GOTO tools node")
return "tools"
else:
logging.info("from chatbot GOTO interactive tools node")
return "interactive_tools"
print("tool call failed, quitting")
return "human"
def human_node(state: OrderState) -> OrderState:
"""Handle user input."""
logging.info(f"Messagelist sent to human node: {[msg.content for msg in state.get('messages', [])]}")
last_msg = state["messages"][-1]
if last_msg.content.lower() in {"q", "quit", "exit", "goodbye"}:
state["finished"] = True
return state
def maybe_exit_human_node(state: OrderState) -> Literal["agent", "__end__"]:
"""Determine if conversation should continue."""
if state.get("finished", False):
logging.info("from human GOTO End node")
return END
last_msg = state["messages"][-1]
if isinstance(last_msg, AIMessage):
logging.info("Chatbot response obtained, ending conversation")
return END
else:
logging.info("from human GOTO agent node")
return "agent"
# Prepare tools
auto_tools = []
tool_node = ToolNode(auto_tools)
interactive_tools = [wikipedia_search_tool, media_tool, internet_search_tool, webscraper_tool, read_excel_tool]
# Bind all tools to the LLM
llm_with_tools = llm.bind_tools(auto_tools + interactive_tools)
# Build the graph
graph_builder = StateGraph(OrderState)
# Add nodes
graph_builder.add_node("agent", agent_node)
graph_builder.add_node("human", human_node)
graph_builder.add_node("tools", tool_node)
graph_builder.add_node("interactive_tools", interactive_tools_node)
# Add edges and routing
graph_builder.add_conditional_edges("agent", maybe_route_to_tools)
graph_builder.add_conditional_edges("human", maybe_exit_human_node)
graph_builder.add_edge("tools", "agent")
graph_builder.add_edge("interactive_tools", "agent")
graph_builder.add_edge(START, "human")
# Compile the graph
chat_graph = graph_builder.compile()
def convert_history_to_messages(history: list) -> list[BaseMessage]:
"""
Convert Gradio chat history to a list of Langchain messages.
Args:
- history: Gradio's chat history format
Returns:
- List of Langchain BaseMessage objects
"""
messages = []
for human, ai in history:
if human:
messages.append(HumanMessage(content=human))
if ai:
messages.append(AIMessage(content=ai))
return messages
def gradio_chat(message: str, history: list) -> str:
"""
Gradio-compatible chat function that manages the conversation state.
Args:
- message: User's input message
- history: Gradio's chat history
Returns:
- Bot's response as a string
"""
logging.info(f"{len(history)} history so far: {history}")
# Ensure non-empty message
if not message or message.strip() == "":
message = "Hello, how can I help you today?"
# Convert history to Langchain messages
conversation_messages = []
for old_message in history:
if old_message["content"].strip():
if old_message["role"] == "user":
conversation_messages.append(HumanMessage(content=old_message["content"]))
if old_message["role"] == "assistant":
conversation_messages.append(AIMessage(content=old_message["content"]))
# Add current message
conversation_messages.append(HumanMessage(content=message))
# Create initial state with conversation history
conversation_state = {
"messages": conversation_messages,
"order": [],
"finished": False
}
logging.info(f"Conversation so far: {str(conversation_state)}")
try:
# Process the conversation through the graph
conversation_state = chat_graph.invoke(conversation_state, {"recursion_limit": 10})
# Extract the latest bot message
latest_message = conversation_state["messages"][-1]
# Return the bot's response content
logging.info(f"return: {latest_message.content}")
return latest_message.content
except Exception as e:
return f"An error occurred: {str(e)}"
# Gradio interface
def launch_agent():
gr.ChatInterface(
gradio_chat,
type="messages",
title="Agent",
description="An AI agent (work in progress)",
theme="ocean"
).launch()
if __name__ == "__main__":
# initiate logging tool
logging.basicConfig(
stream=sys.stdout,
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
launch_agent() |