File size: 7,929 Bytes
e2599e3
 
2dc3ffd
e2599e3
 
 
 
 
 
 
 
 
 
 
 
dbc454d
e2599e3
c001c3e
e2599e3
 
 
 
 
 
 
 
 
dbc454d
e2599e3
dbc454d
 
 
 
 
 
 
c001c3e
e2599e3
 
 
 
 
 
dbc454d
 
 
 
 
 
 
 
e2599e3
 
 
 
dbc454d
e2599e3
 
 
 
dbc454d
e2599e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbc454d
e2599e3
 
 
 
dbc454d
e2599e3
 
dbc454d
 
e2599e3
 
 
 
 
 
 
 
 
 
 
dbc454d
e2599e3
 
 
 
 
 
 
 
 
dbc454d
 
e2599e3
 
dbc454d
e2599e3
 
dbc454d
e2599e3
 
dbc454d
e2599e3
 
 
 
 
dbc454d
e2599e3
 
 
 
dbc454d
e2599e3
dbc454d
 
e2599e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c001c3e
 
e2599e3
ef86a0e
 
e2599e3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#pip install langchain_google_genai langgraph gradio
import os
import sys
import typing
from typing import Annotated, Literal, Iterable
from typing_extensions import TypedDict

from langchain_google_genai import ChatGoogleGenerativeAI
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode
from langchain_core.tools import tool
from langchain_core.messages import AIMessage, ToolMessage, HumanMessage, BaseMessage, SystemMessage
from random import randint

import wikipedia

import gradio as gr
import logging

class OrderState(TypedDict):
    """State representing the customer's order conversation."""
    messages: Annotated[list, add_messages]
    order: list[str]
    finished: bool

# System instruction for the BaristaBot
SYSINT = (
    "system",
    "You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: "
    "FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings."
    "If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise."
    "If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise."
    "If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."
    "If a tool required for task completion is unavailable after multiple tries, return 0."
    )

WELCOME_MSG = "Welcome to the BaristaBot cafe. Type `q` to quit. How may I serve you today?"

# Initialize the Google Gemini LLM
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest")

@tool
def wikipedia_search(title: str) -> str:
    """Provides a short snippet from a Wikipedia article with the given itle"""
    page = wikipedia.page(title)
        return page.content[:100]

def agent_node(state: OrderState) -> OrderState:
    """agent with tool handling."""
    print(f"Messagelist sent to agent node: {[msg.content for msg in state.get('messages', [])]}")
    defaults = {"order": [], "finished": False}

    # Ensure we always have at least a system message
    if not state.get("messages", []):
        return defaults | state | {"messages": []}

    try:
        # Prepend system instruction if not already present
        messages_with_system = [
            SystemMessage(content=SYSINT)
        ] + state.get("messages", [])

        # Process messages through the LLM
        new_output = llm_with_tools.invoke(messages_with_system)

        return defaults | state | {"messages": [new_output]}
    except Exception as e:
        # Fallback if LLM processing fails
        return defaults | state | {"messages": [AIMessage(content=f"I'm having trouble processing that. {str(e)}")]}

def maybe_route_to_tools(state: OrderState) -> str:
    """Route between chat and tool nodes."""
    if not (msgs := state.get("messages", [])):
        raise ValueError(f"No messages found when parsing state: {state}")

    msg = msgs[-1]

    if state.get("finished", False):
        print("from agent GOTO End node")
        return END

    elif hasattr(msg, "tool_calls") and len(msg.tool_calls) > 0:
        if any(tool["name"] in tool_node.tools_by_name.keys() for tool in msg.tool_calls):
            print("from agent GOTO tools node")
            return "tools"

    print("tool call failed, letting agent try again")
    return "human"

def human_node(state: OrderState) -> OrderState:
    """Handle user input."""
    logging.info(f"Messagelist sent to human node: {[msg.content for msg in state.get('messages', [])]}")
    last_msg = state["messages"][-1]

    if last_msg.content.lower() in {"q", "quit", "exit", "goodbye"}:
        state["finished"] = True

    return state

def maybe_exit_human_node(state: OrderState) -> Literal["agent", "__end__"]:
    """Determine if conversation should continue."""
    if state.get("finished", False):
        logging.info("from human GOTO End node")
        return END
    last_msg = state["messages"][-1]
    if isinstance(last_msg, AIMessage):
        logging.info("Chatbot response obtained, ending conversation")
        return END
    else:
        logging.info("from human GOTO agent node")
        return "agent"

# Prepare tools
auto_tools = []
tool_node = ToolNode(auto_tools)

interactive_tools = [wikipedia_search]

# Bind all tools to the LLM
llm_with_tools = llm.bind_tools(auto_tools + interactive_tools)

# Build the graph
graph_builder = StateGraph(OrderState)

# Add nodes
graph_builder.add_node("chatbot", agent_node)
graph_builder.add_node("human", human_node)
graph_builder.add_node("tools", tool_node)

# Add edges and routing
graph_builder.add_conditional_edges("agent", maybe_route_to_tools)
graph_builder.add_conditional_edges("human", maybe_exit_human_node)
graph_builder.add_edge("tools", "agent")
graph_builder.add_edge("ordering", "agent")
graph_builder.add_edge(START, "human")

# Compile the graph
chat_graph = graph_builder.compile()

def convert_history_to_messages(history: list) -> list[BaseMessage]:
    """
    Convert Gradio chat history to a list of Langchain messages.
    
    Args:
    - history: Gradio's chat history format
    
    Returns:
    - List of Langchain BaseMessage objects
    """
    messages = []
    for human, ai in history:
        if human:
            messages.append(HumanMessage(content=human))
        if ai:
            messages.append(AIMessage(content=ai))
    return messages

def gradio_chat(message: str, history: list) -> str:
    """
    Gradio-compatible chat function that manages the conversation state.
    
    Args:
    - message: User's input message
    - history: Gradio's chat history
    
    Returns:
    - Bot's response as a string
    """
    logging.info(f"{len(history)} history so far: {history}")
    # Ensure non-empty message
    if not message or message.strip() == "":
        message = "Hello, how can I help you today?"

    # Convert history to Langchain messages
    conversation_messages = []
    for old_message in history:
        if old_message["content"].strip():
            if old_message["role"] == "user":
                conversation_messages.append(HumanMessage(content=old_message["content"]))
            if old_message["role"] == "assistant":
                conversation_messages.append(AIMessage(content=old_message["content"]))
    
    # Add current message
    conversation_messages.append(HumanMessage(content=message))
    
    # Create initial state with conversation history
    conversation_state = {
        "messages": conversation_messages, 
        "order": [], 
        "finished": False
    }
    logging.info(f"Conversation so far: {str(conversation_state)}")
    try:
        # Process the conversation through the graph
        conversation_state = chat_graph.invoke(conversation_state, {"recursion_limit": 10})
        
        # Extract the latest bot message
        latest_message = conversation_state["messages"][-1]
        
        # Return the bot's response content
        logging.info(f"return: {latest_message.content}")
        return latest_message.content
    
    except Exception as e:
        return f"An error occurred: {str(e)}"

# Gradio interface
def launch_baristabot():
    gr.ChatInterface(
        gradio_chat,
        type="messages",
        title="BaristaBot",
        description="Your friendly AI cafe assistant",
        theme="ocean"
    ).launch()

if __name__ == "__main__":
    # initiate logging tool
    logging.basicConfig(
                    stream=sys.stdout,
                    level=logging.INFO,
                    format='%(asctime)s - %(levelname)s - %(message)s')
    launch_baristabot()