Spaces:
Sleeping
Sleeping
File size: 10,650 Bytes
d5dec6f 45d767e d5dec6f 45d767e d5dec6f 45d767e d5dec6f 45d767e d5dec6f 45d767e d5dec6f 45d767e d5dec6f 45d767e d5dec6f 45d767e d5dec6f 45d767e d5dec6f 45d767e d5dec6f 2a15979 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import os
import requests
import pandas as pd
from typing import Annotated
from typing_extensions import TypedDict
from langchain_google_genai import ChatGoogleGenerativeAI
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode
from langchain_core.tools import tool
from langchain_core.messages import AIMessage, ToolMessage, HumanMessage, SystemMessage
from smolagents import DuckDuckGoSearchTool
import requests
from bs4 import BeautifulSoup
import wikipedia
import pandas as pd
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class OrderState(TypedDict):
"""State representing the customer's order conversation."""
messages: Annotated[list, add_messages]
order: list[str]
finished: bool
# System instruction for the Agent
SYSINT = (
"system",
"You are a general AI assistant. I will ask you a question."
"The question requires a tool to solve. You must attempt to use at least one of the available tools before returning an answer."
"Report your thoughts, and finish your answer with the following template: "
"FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings."
"If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise."
"If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise."
"If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."
"If a tool required for task completion is not functioning, return 0."
)
WELCOME_MSG = "Welcome to my general-purpose AI agent. Type `q` to quit. How shall I fail to serve you today?"
@tool
def wikipedia_search_tool(title: str) -> str:
"""Provides an excerpt from a Wikipedia article with the given title."""
try:
page = wikipedia.page(title, auto_suggest=False)
return page.content[:3000]
except Exception as e:
return f"Error during processing: {e}"
@tool
def media_tool(file_path: str) -> str:
"""Used for deciphering video and audio files."""
return "This tool hasn't been implemented yet. Please return 0 if the task cannot be solved without knowing the contents of this file."
@tool
def internet_search_tool(search_query: str) -> str:
"""Does a google search with using the input as the search query. Returns a long batch of textual information related to the query."""
try:
search_tool = DuckDuckGoSearchTool()
result = search_tool(search_query)
return result
except Exception as e:
return f"Error during processing: {e}"
@tool
def webscraper_tool(url: str) -> str:
"""Returns the page's html content from the input url."""
try:
response = requests.get(url, stream=True)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
html_text = soup.get_text()
return html_text
else:
return f"Failed to retrieve the webpage. Status code: {response.status_code}"
except Exception as e:
return f"Error during processing: {e}"
@tool
def read_excel_tool(file_path: str) -> str:
"""Returns the contents of an Excel file as a Pandas dataframe."""
try:
df = pd.read_excel(file_path, engine = "openpyxl")
return df.to_string(index=False)
except Exception as e:
return f"Error during processing: {e}"
class AgenticAI:
def __init__(self):
# initialize LLM
self.llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash")
# prepare tool list
self.tools = [
wikipedia_search_tool,
media_tool,
internet_search_tool,
webscraper_tool,
read_excel_tool,
]
# bind tools
self.llm_with_tools = self.llm.bind_tools(self.tools)
# standalone ToolNode for any non-interactive tools (none here)
self.tool_node = ToolNode([])
# build state graph
self.graph = StateGraph(OrderState)
self.graph.add_node("agent", self._agent_node)
self.graph.add_node("interactive_tools", self._interactive_tools_node)
self.graph.add_node("human", self._human_node)
# routing
self.graph.add_conditional_edges("agent", self._maybe_route_to_tools)
self.graph.add_conditional_edges("human", self._maybe_exit_human_node)
self.graph.add_edge("interactive_tools", "agent")
self.graph.add_edge(START, "human")
self.chat_graph = self.graph.compile()
def ask(self, human_input: str) -> str:
"""
Take a single human input, run through the full agent+tool graph,
return the AI's reply, and discard any stored human/chat history.
"""
# build initial messages
init_msgs = [
SystemMessage(content=SYSINT),
HumanMessage(content=human_input)
]
state = {"messages": init_msgs, "order": [], "finished": False}
try:
final_state = self.chat_graph.invoke(state, {"recursion_limit": 15})
# last message should be from the AI
ai_msg = final_state["messages"][-1]
return ai_msg.content
except Exception as e:
return f"Error during processing: {e}"
# --- internal node functions (mirror your original code) ---
def _agent_node(self, state: OrderState) -> OrderState:
print(f"Messagelist sent to agent node: {[msg.content for msg in state.get('messages', [])]}")
defaults = {"order": [], "finished": False}
msgs = state.get("messages", [])
if not msgs:
# no prior messages: seed with system + empty AI message
return {**defaults, "messages": [SystemMessage(SYSINT), AIMessage(content="")]}
try:
# always ensure system prompt is first
msgs = [SystemMessage(SYSINT)] + msgs
new_output = self.llm_with_tools.invoke(msgs)
return {**defaults, "messages": [new_output]}
except Exception as e:
return {**defaults, "messages": [AIMessage(content=f"I'm having trouble: {e}")]}
def _interactive_tools_node(self, state: OrderState) -> OrderState:
tool_msg = state["messages"][-1]
outbound_msgs = []
for tool_call in tool_msg.tool_calls:
tool_name = tool_call["name"]
tool_args = tool_call["args"]
if tool_name == "wikipedia_search_tool":
try:
print(f"called wikipedia with {str(tool_args)}")
page = wikipedia.page(tool_args.get("title"), auto_suggest=False)
response = page.content[:3000]
except Exception as e:
response = e
elif tool_name == "media_tool":
try:
print(f"called media with {str(tool_args)}")
response = "This tool hasn't been implemented yet. Please return 0 if the task cannot be solved without knowing the contents of this file."
except Exception as e:
response = e
elif tool_name == "internet_search_tool":
try:
print(f"called internet with {str(tool_args)}")
question = tool_args.get("search_query")
search_tool = DuckDuckGoSearchTool()
response = search_tool(question)[:3000]
except Exception as e:
response = e
elif tool_name == "webscraper_tool":
try:
print(f"called webscraper with {str(tool_args)}")
url = tool_args.get("url")
response = requests.get(url, stream=True)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
html_text = soup.get_text()
response = html_text
else:
response = f"Failed to retrieve the webpage. Status code: {response.status_code}"
except Exception as e:
response = e
elif tool_name == "read_excel_tool":
try:
print(f"called excel with {str(tool_args)}")
path = tool_args.get("file_path")
df = pd.read_excel(path, engine = "openpyxl")
response = df
except Exception as e:
response = e
else:
response = f'Unknown tool call: {tool_name}'
outbound_msgs.append(
ToolMessage(
content=response,
name=tool_name,
tool_call_id=tool_call["id"],
)
)
return {"messages": outbound_msgs, "order": state.get("order", []), "finished": False}
def _human_node(self, state: OrderState) -> OrderState:
print(f"Messagelist sent to human node: {[msg.content for msg in state.get('messages', [])]}")
last = state["messages"][-1]
if isinstance(last, HumanMessage) and last.content.strip().lower() in {"q", "quit", "exit", "goodbye"}:
state["finished"] = True
return state
def _maybe_route_to_tools(self, state: OrderState) -> str:
msgs = state.get("messages", [])
if state.get("finished"):
print("from agent GOTO End node")
return END
last = msgs[-1]
if hasattr(last, "tool_calls") and last.tool_calls:
print("from agent GOTO tools node")
# go run interactive tools
return "interactive_tools"
# else, end conversation
print("tool call failed, quitting")
return END
def _maybe_exit_human_node(self, state: OrderState) -> str:
if state.get("finished"):
print("from human GOTO End node")
return END
last = state["messages"][-1]
# if AIMessage then end after one turn
print("from human GOTO agent node or quit")
return END if isinstance(last, AIMessage) else "agent" |