File size: 10,650 Bytes
d5dec6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d767e
 
 
 
 
d5dec6f
 
 
 
 
 
 
 
 
45d767e
 
 
 
 
 
d5dec6f
 
 
 
45d767e
 
 
 
 
 
 
 
 
 
d5dec6f
 
 
 
45d767e
 
 
 
 
d5dec6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d767e
 
 
 
 
 
d5dec6f
45d767e
 
 
 
 
d5dec6f
45d767e
 
 
 
 
 
 
d5dec6f
45d767e
 
 
 
 
 
 
 
 
 
 
 
d5dec6f
45d767e
 
 
 
 
 
 
d5dec6f
 
45d767e
d5dec6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a15979
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import requests
import pandas as pd

from typing import Annotated
from typing_extensions import TypedDict
from langchain_google_genai import ChatGoogleGenerativeAI
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode
from langchain_core.tools import tool
from langchain_core.messages import AIMessage, ToolMessage, HumanMessage, SystemMessage

from smolagents import DuckDuckGoSearchTool
import requests
from bs4 import BeautifulSoup
import wikipedia
import pandas as pd

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class OrderState(TypedDict):
    """State representing the customer's order conversation."""
    messages: Annotated[list, add_messages]
    order: list[str]
    finished: bool

# System instruction for the Agent
SYSINT = (
    "system",
    "You are a general AI assistant. I will ask you a question."
    "The question requires a tool to solve. You must attempt to use at least one of the available tools before returning an answer."
    "Report your thoughts, and finish your answer with the following template: "
    "FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings."
    "If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise."
    "If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise."
    "If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."
    "If a tool required for task completion is not functioning, return 0."
    )

WELCOME_MSG = "Welcome to my general-purpose AI agent. Type `q` to quit. How shall I fail to serve you today?"

@tool
def wikipedia_search_tool(title: str) -> str:
    """Provides an excerpt from a Wikipedia article with the given title."""
    try:
        page = wikipedia.page(title, auto_suggest=False)
        return page.content[:3000]
    except Exception as e:
        return f"Error during processing: {e}"

@tool
def media_tool(file_path: str) -> str:
    """Used for deciphering video and audio files."""
    return "This tool hasn't been implemented yet. Please return 0 if the task cannot be solved without knowing the contents of this file."

@tool
def internet_search_tool(search_query: str) -> str:
    """Does a google search with using the input as the search query. Returns a long batch of textual information related to the query."""
    try:
        search_tool = DuckDuckGoSearchTool()
        result = search_tool(search_query)
        return result
    except Exception as e:
        return f"Error during processing: {e}"

@tool
def webscraper_tool(url: str) -> str:
    """Returns the page's html content from the input url."""
    try:
        response = requests.get(url, stream=True)
        if response.status_code == 200:
            soup = BeautifulSoup(response.content, 'html.parser')
            html_text = soup.get_text()
            return html_text
        else:
            return f"Failed to retrieve the webpage. Status code: {response.status_code}"
    except Exception as e:
        return f"Error during processing: {e}"

@tool
def read_excel_tool(file_path: str) -> str:
    """Returns the contents of an Excel file as a Pandas dataframe."""
    try:
        df = pd.read_excel(file_path, engine = "openpyxl")
        return df.to_string(index=False)
    except Exception as e:
        return f"Error during processing: {e}"

class AgenticAI:
    def __init__(self):
        # initialize LLM
        self.llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash")
        # prepare tool list
        self.tools = [
            wikipedia_search_tool,
            media_tool,
            internet_search_tool,
            webscraper_tool,
            read_excel_tool,
        ]
        # bind tools
        self.llm_with_tools = self.llm.bind_tools(self.tools)
        # standalone ToolNode for any non-interactive tools (none here)
        self.tool_node = ToolNode([])
        # build state graph
        self.graph = StateGraph(OrderState)
        self.graph.add_node("agent", self._agent_node)
        self.graph.add_node("interactive_tools", self._interactive_tools_node)
        self.graph.add_node("human", self._human_node)
        # routing
        self.graph.add_conditional_edges("agent", self._maybe_route_to_tools)
        self.graph.add_conditional_edges("human", self._maybe_exit_human_node)
        self.graph.add_edge("interactive_tools", "agent")
        self.graph.add_edge(START, "human")
        self.chat_graph = self.graph.compile()

    def ask(self, human_input: str) -> str:
        """
        Take a single human input, run through the full agent+tool graph,
        return the AI's reply, and discard any stored human/chat history.
        """
        # build initial messages
        init_msgs = [
            SystemMessage(content=SYSINT),
            HumanMessage(content=human_input)
        ]
        state = {"messages": init_msgs, "order": [], "finished": False}
        try:
            final_state = self.chat_graph.invoke(state, {"recursion_limit": 15})
            # last message should be from the AI
            ai_msg = final_state["messages"][-1]
            return ai_msg.content
        except Exception as e:
            return f"Error during processing: {e}"

    # --- internal node functions (mirror your original code) ---
    def _agent_node(self, state: OrderState) -> OrderState:
        print(f"Messagelist sent to agent node: {[msg.content for msg in state.get('messages', [])]}")
        defaults = {"order": [], "finished": False}
        msgs = state.get("messages", [])
        if not msgs:
            # no prior messages: seed with system + empty AI message
            return {**defaults, "messages": [SystemMessage(SYSINT), AIMessage(content="")]}

        try:
            # always ensure system prompt is first
            msgs = [SystemMessage(SYSINT)] + msgs
            new_output = self.llm_with_tools.invoke(msgs)
            return {**defaults, "messages": [new_output]}
        except Exception as e:
            return {**defaults, "messages": [AIMessage(content=f"I'm having trouble: {e}")]}

    def _interactive_tools_node(self, state: OrderState) -> OrderState:
        tool_msg = state["messages"][-1]
        outbound_msgs = []
        for tool_call in tool_msg.tool_calls:
            tool_name = tool_call["name"]
            tool_args = tool_call["args"]

            if tool_name == "wikipedia_search_tool":
                try:
                    print(f"called wikipedia with {str(tool_args)}")
                    page = wikipedia.page(tool_args.get("title"), auto_suggest=False)
                    response = page.content[:3000]
                except Exception as e:
                    response = e
            elif tool_name == "media_tool":
                try:
                    print(f"called media with {str(tool_args)}")
                    response = "This tool hasn't been implemented yet. Please return 0 if the task cannot be solved without knowing the contents of this file."
                except Exception as e:
                    response = e
            elif tool_name == "internet_search_tool":
                try:
                    print(f"called internet with {str(tool_args)}")
                    question = tool_args.get("search_query")
                    search_tool = DuckDuckGoSearchTool()
                    response = search_tool(question)[:3000]
                except Exception as e:
                    response = e
            elif tool_name == "webscraper_tool":
                try:
                    print(f"called webscraper with {str(tool_args)}")
                    url = tool_args.get("url")
                    response = requests.get(url, stream=True)
                    if response.status_code == 200:
                        soup = BeautifulSoup(response.content, 'html.parser')
                        html_text = soup.get_text()
                        response = html_text
                    else:
                        response = f"Failed to retrieve the webpage. Status code: {response.status_code}"
                except Exception as e:
                    response = e
            elif tool_name == "read_excel_tool":
                try:
                    print(f"called excel with {str(tool_args)}")
                    path = tool_args.get("file_path")
                    df = pd.read_excel(path, engine = "openpyxl")
                    response = df
                except Exception as e:
                    response = e

            else:
                response = f'Unknown tool call: {tool_name}'
            
            outbound_msgs.append(
            ToolMessage(
                content=response,
                name=tool_name,
                tool_call_id=tool_call["id"],
            )
        )

        return {"messages": outbound_msgs, "order": state.get("order", []), "finished": False}

    def _human_node(self, state: OrderState) -> OrderState:
        print(f"Messagelist sent to human node: {[msg.content for msg in state.get('messages', [])]}")
        last = state["messages"][-1]
        if isinstance(last, HumanMessage) and last.content.strip().lower() in {"q", "quit", "exit", "goodbye"}:
            state["finished"] = True
        return state

    def _maybe_route_to_tools(self, state: OrderState) -> str:
        msgs = state.get("messages", [])
        if state.get("finished"):
            print("from agent GOTO End node")
            return END

        last = msgs[-1]
        if hasattr(last, "tool_calls") and last.tool_calls:
            print("from agent GOTO tools node")
            # go run interactive tools
            return "interactive_tools"
        # else, end conversation
        print("tool call failed, quitting")
        return END

    def _maybe_exit_human_node(self, state: OrderState) -> str:
        if state.get("finished"):
            print("from human GOTO End node")
            return END
        last = state["messages"][-1]
        # if AIMessage then end after one turn
        print("from human GOTO agent node or quit")
        return END if isinstance(last, AIMessage) else "agent"